Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 807(Pt 3): 151073, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678368

RESUMO

Ferrihydrite-humic acid co-precipitates have impacts on the adsorption and reduction of Cr(VI) in the natural environment. Besides, ferrihydrite-humic acid co-precipitates usually coexist with foreign metal cations like Al(III) and Mn(II), which may change the properties of ferrihydrite and affect the fate of Cr(VI). In this work, structurally incorporated Al(III) or Mn(II) in ferrihydrite-humic acid co-precipitates with Cr(VI) (Fh-HA-Cr-Al or Fh-HA-Cr-Mn) were prepared, and the behavior and phase transformation of co-precipitates were explored via the characterization analyses of samples during aging for 10 days. This study showed that partial adsorbed Cr(VI) was reduced to Cr(III) in the presence of humic acid, thereby reducing the toxicity of Cr(VI). Interestingly, two different results occurred because of the incorporation of Al(III) and Mn(II). Al(III) hindered the transformation of ferrihydrite and changed the aging products by inhibiting the dissolution of ferrihydrite, which decreased Cr to incorporate iron minerals. By contrast, doping of Mn(II) accelerated the phase transformation of co-precipitates, and was more conducive to the encapsulation and fixation of Cr. The results of this study can facilitate the understanding of the effects of Al(III) and Mn(II) on Cr(VI) fixation during the aging of Fh-HA-Cr.


Assuntos
Substâncias Húmicas , Cromo , Compostos Férricos
2.
Sci Total Environ ; 767: 145429, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550060

RESUMO

Redistribution of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates (Fh-Cr) was affected by co-precipitates transformation and coexisting substances. These effects were crucial for predicting the migration path of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates. This work investigated the effects of the extensively used surfactants of anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) on the Fh-Cr transformation and redistribution of Cr(VI) for 10 days at different pH values (5.0, 7.5 and 9.0) and concentration of surfactants (0.5, 2.0 and 5.0 mM). The results showed that SDBS hindered the transformation of Fh-Cr to hematite and tended to transform into goethite. SDBS inhibited hematite formation by inhibiting the aggregation of Fh-Cr particles, and it enhanced the dissolution of Fh-Cr to facilitate the formation of goethite. Affected by the inhibition of Fh-Cr transformation, the process of Cr(VI) redistribution was delayed. CTAB did not affect the transformation of Fh-Cr, but allowed more Cr(VI) to enter the interior of iron minerals. When the surfactants were adsorbed on the Fh-Cr, SDBS decreased the adsorption of Cr(VI) by Fh-Cr, while CTAB increased the Cr(VI) adsorption. The findings of this study contribute to understand the effects of surfactants on the transformation of Fh-Cr and the behaviors of Cr(VI) during this process.

3.
J Hazard Mater ; 408: 124423, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162243

RESUMO

Ferrihydrite is ubiquitous in natural environments and is usually co-precipitated with impure ions and toxic contaminants like Al(III) and Sb(V) during the neutralization process of acid mine drainage. However, little is known about the dynamic interactions among ferrihydrite, Al(III) and Sb(V). In this study, the influence of coprecipitated Al(III) and Sb(V) on the transformation of ferrihydrite was investigated. The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy before and after aging for 10 days at 70 °C. Results indicated that the Al(III) enhanced the immobilization of Sb(V) under neutral and alkaline conditions, and the presence of Sb(V) induced more production of extractable Al(III). XRD patterns revealed that the transformation rate of coprecipitated Al(III) and Sb(V) ferrihydrite was higher than Al-coprecipitated ferrihydrite. It is speculated that the presence of Sb(V) weakened the inhibition of Al(III) under experimental conditions. Competitive reaction of Al(III) and Sb(V) for substitution on the lattice Fe of ferrihydrite, likely decreased Al(III) substitution on ferrihydrite, and thus increased the observed transformation rate of ferrihydrite. These results have significant environmental implications for predicting the role of impurities and contaminants on ferrihydrite transformation processes.

4.
J Colloid Interface Sci ; 576: 10-20, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32408159

RESUMO

Removal of toxic Cr(VI) and Sb(III) from wastewater is crucial owing to their potential hazard to the environment and human health. In this work, a novel magnetic composite, core-shell Fe3O4@Ce-Zr binary oxide (Mag@Ce-Zr), was synthesized by a simple and eco-friendly co-precipitation method to remove Cr(VI) and Sb(III). The synthetic Mag@Ce-Zr composites exhibited superior magnetic separation (saturation magnetization value was 43.8 emu/g), great maximum adsorption capacities toward Cr(VI) and Sb(III) (66.7 mg/g for Cr(VI) and 365.2 mg/g for Sb(III)) and remarkable regeneration and reusability property. The adsorption mechanisms of negatively charged Cr(VI) oxyanions involved electrostatic attraction and the formation of Ce/Zr-O-Cr complexes. However, Sb(III) was adsorbed mainly through surface complexation with abundant hydroxyl groups to form Ce/Zr-O-Sb complexes. More importantly, based on X-ray photoelectron spectroscopy analysis, partial Cr(VI) and Sb(III) were converted to less toxic Cr(III) and Sb(V) by the core Fe(II) and shell Ce(IV) of Mag@Ce-Zr through electron transfer during adsorption process. Results revealed that the Mag@Ce-Zr composites displayed greater potential in the removal of Sb(III) from wastewater owing to its higher affinity with antimony species.

5.
J Hazard Mater ; 392: 122272, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32086091

RESUMO

The mobility of Cr(VI) in the environment is affected by the transformation of ferrihydrite (Fh) and ferrihydrite-humic acid co-precipitates (Fh-HA). However, the impacts of Fe(II)-induced transformation of Fh and Fh-HA on the mobility, speciation and partitioning of associated Cr(VI) remain unclear. In this study, the behaviors of adsorbed Cr(VI) during Fh and Fh-HA aging at 70 °C for 9 days (pH0 = 3.0 and 7.0) in the absence and presence of Fe(II) were studied. Results revealed that the main speciation of Cr(VI) after transformation was non-desorbable Cr and its formation involved the following pathways. Firstly, Fe(II) (0.2 and 2.0 mM) induced the transformation of Fh-HA to hematite and goethite, promoting the structural incorporation of adsorbed Cr into hematite and goethite via complexation. Secondly, under neutral condition (pH0 = 7.0), the low concentration of Fe(II) (0.2 mM) could not reduce completely Cr(VI) to Cr(III) and thus residual Cr(VI) was incorporated into the Cr(III)-Fe(III) co-precipitates. Thirdly, coprecipitated humic acid not only reduced Cr(VI) to Cr(III) via polysaccharide, but also formed complexes with incorporated Cr through carboxylic groups to sequester Cr. Our results demonstrate that Fe(II)-induced transformation of Fh-HA exerts major influences on associated Cr(VI) speciation and partitioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...