Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036403

RESUMO

Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor based on dip-coating of graphene onto an electrospun thermoplastic polyurethane (TPU) nanofibrous membrane, followed by spinning of the TPU/graphene nanomembrane into an intertwined-coil configuration. Owing to the intertwined-coil configuration and the synergy of the two structures (nanoscale fiber gap and microscale twisting of the fiber gap), the conductive strain sensor showed a stretchability of 1100%. The self-inter-locking of the sensor prevents the coils from uncoiling. Thanks to the intertwined-coil configuration, most of the fibers were wrapped into the coils in the configuration, thus avoiding the falling off of graphene. This special configuration also endowed our strain sensor with an ability of recovery under a strain of 400%, which is higher than the stretching limit of knees and elbows in human motion. The strain sensor detected not only subtle movements (such as perceiving a pulse and identifying spoken words), but also large movements (such as recognizing the motion of fingers, wrists, knees, etc.), showing promising application potential to perform as flexible strain sensors.

2.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033360

RESUMO

Stretchable nano-fibers have attracted dramatic attention for the utility in wearable and flexible electronics. In the present case, Ag nanowires (AgNWs)-intertwined thermoplastic polyurethanes (TPU) unwoven nano-membrane is fabricated by an electrospinning method and dip coating technique. Then a strain sensor with a spring-like configuration is fabricated by a twisted method. The sensor exhibits superior electrical conductivity up to 3990 S cm-1 due to the high weight percentage of the Ag nanowires. Additionally, thanks to the free-standing spring-like configuration that consists of uniform neat loops, the strain sensor can detect a superior strain up to 900% at the point the sensor ruptures. On the other hand, the configuration can mostly protect the AgNWs from falling off. Furthermore, major human motion detection, like movement of a human forefinger, and minor human motion detection, such as a wrist pulse, show the possible application of the sensor in the field of flexible electronics.

3.
Macromol Rapid Commun ; 40(5): e1800022, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29675910

RESUMO

Regulating fluorescence lifetime of lanthanide nanocomposites is highly desired for optical multiplexing applications, for instance, security printing, anticounterfeiting, and data storage. Herein, sensitive fluorescence lifetime tuning in nanocomposite fibers is reported which are composed of silica-coated gold nanorods assembled in Eu-polystyrene nanofibers. The prepared nanofibers possess unique properties of tunable fluorescence lifetime and distinct textured patterns together with superior flexibility and superhydrophobicity. In a single 612 nm emission channel, over ten different populations of fluorescence lifetime from the range of 322-551 µs are harvested. Thanks to the tunable fluorescence lifetime and different textured patterns, a security pattern to demonstrate optical multiplexing applications is designed. The security pattern hides the real information of "69" in a noticeable scene that shows fake information "8" under UV radiation or "13" by only watching their pattern structures.


Assuntos
Nanofibras/química , Polímeros/química , Nanofibras/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Espectrometria de Fluorescência , Raios Ultravioleta
4.
Nanoscale Res Lett ; 11(1): 426, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664017

RESUMO

A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

5.
Nanoscale ; 8(5): 2944-50, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26781815

RESUMO

A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.

6.
Nanoscale Res Lett ; 10(1): 475, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646688

RESUMO

Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors.

7.
Nanoscale Res Lett ; 10: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852319

RESUMO

CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

8.
Nanoscale ; 7(13): 5603-6, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25744100

RESUMO

A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc.


Assuntos
Fontes de Energia Bioelétrica , Galvanoplastia/métodos , Sistemas Homem-Máquina , Nanofibras/química , Nanotecnologia/instrumentação , Polímeros/química , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanofibras/ultraestrutura , Rotação
9.
Nanotechnology ; 26(4): 045703, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25557116

RESUMO

Conducting polypyrrole (PPY) nanowires doped with p-toluene sulfonamide (PTSA) were synthesized by a template-free self-assembly method. Electrical transport characteristics, i.e. current-voltage (I-V) behavior, of an individual PPY/PTSA nanowire have been explored in a wide temperature range from 300 down to 40 K. The fitting results of I-V curves indicated that the electrical conduction mechanism can be explained by the space-charge-limited current (SCLC) theory from 300 down to 100 K. In this temperature range, traps play an important role for this non-crystalline system. The corresponding trap energy and trap concentration have also been calculated based on the SCLC theory. Interestingly, there is no trap at 160 K, different from other temperatures. The obtained carrier mobility for the polymer nanowires is 0.964 cm(2) V(-1) s(-1) on the basis of trap free SCLC theory. In the temperature range of 80-40 K, little current can flow through the nanowire especially at lower voltages, however, the current follows the equation I ∞ (V/Vt-1)(ζ) at higher bias, which could be attributed to Coulomb blockade effect. Additionally, the differential conductance dI/dV curves also show some clear Coulomb oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...