Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3352, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558631

RESUMO

Soybean meal-induced enteropathy (SBMIE) is prevalent in aquaculture. The aim of this study is to evaluate the role of daidzein on SBMIE of juvenile turbot (Scophthalmus maximus L.) by feeding with fish meal diet (FM), soybean meal diet (SBM, 40% fish meal protein in FM replaced by soybean meal protein) and daidzein diet (DAID, 40 mg/kg daidzein supplemented to SBM) for 12 weeks. We found that daidzein supplementation elevated the gene expression of anti-inflammatory cytokine TGF-ß, decreased gene expression of pro-inflammatory cytokines TNF-α and signal molecules p38, JNK and NF-κB. SBM up-regulated the genes expression related to oxidative stress and apoptosis, but dietary daidzein restored it to the similar level with that in FM group. Moreover, dietary daidzein up-regulated gene expression of tight junction protein, and modified the intestinal microbial profiles with boosted relative abundance of phylum Proteobacteria and Deinococcus-Thermus, genera Sphingomonas and Thermus, species Lactococcus lactis, and decreased abundance of some potential pathogenic bacteria. In conclusion, dietary daidzein could ameliorate SBM-induced intestinal inflammatory response, oxidative stress, mucosal barrier injury and microbiota community disorder of turbot. Moreover, p38, JNK and NF-κB signaling might be involved in the anti-inflammatory process of daidzein, and daidzein itself might act as an antioxidant to resist SBM-induced oxidative damage.


Assuntos
Ração Animal/efeitos adversos , Doenças dos Peixes , Proteínas de Peixes/biossíntese , Linguados/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas de Soja/efeitos adversos , Animais , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/metabolismo , Proteínas de Soja/farmacologia
2.
Fish Shellfish Immunol Rep ; 2: 100031, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420502

RESUMO

The study is aimed to investigate the protective effect and potential mechanisms of sodium butyrate (NaBT) on soyasaponins (SA) induced intestinal epithelial cells (IECs) injury in vitro. The primary IECs of turbot were developed and treated with 0.4, 1 and 4 mM NaBT in the presence of 0.4 mg/mL SA for 6 h to explore the protective effects of NaBT. The results showed that the addition of NaBT significantly down-regulated gene expression of inflammatory cytokine TNF-α, IL-1ß and IL-8, pro-apoptosis relevant gene BAX, caspase-3, caspase-7 and caspase-9 induced by SA, while up-regulated anti-apoptosis gene Bcl-2. SA stimulation did not induce reactive oxygen species production, but elevated gene expression of antioxidant enzyme heme oxygenase-1 and superoxide dismutase. Moreover, the gene expression of those antioxidant enzyme was further up-regulated in NaBT groups. Furthermore, NaBT supplementation decreased the acid phosphatase and alkaline phosphatase activities and suppressed phosphorylation of p38 and c-Jun N-terminal kinase (JNK). In conclusion, NaBT could mitigate SA-induced inflammation and apoptosis and elevate gene expression of antioxidant enzymes on IECs of turbot and p38 and JNK signaling pathway participated in those processes.

3.
Mar Life Sci Technol ; 3(4): 434-448, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37073265

RESUMO

As the significance of the gut microbiota has become increasingly realized, a large number of related studies have emerged. With respect to the gut microbial composition of fish, the predominant gut microbes and core gut microbiota have been reported by many researchers. Our understanding of fish gut microbiota, especially its functional roles, has fallen far behind that of terrestrial vertebrates, although previous studies using gnotobiotic zebrafish models have revealed that the gut microbiota performs a significant role in gut development, nutrient metabolism and immune responses. Given that environmental factors of marine habitats are very different from those of freshwater habitats, a distinct difference may exist in the gut microbiota between freshwater and marine fish. Therefore, this review aims to address the advances in marine fish gut microbiota in terms of methodologies, the gut microbial composition, and gnotobiotic models of marine fish, the important factors (host genotype and three environmental factors: temperature, salinity and diet) that drive marine fish gut microbiota, and significant roles of the gut microbiota in marine fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...