Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Burns Trauma ; 12: tkad051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250705

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.

2.
Small ; 20(6): e2305900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786266

RESUMO

Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.

3.
Biosensors (Basel) ; 13(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998159

RESUMO

The empty-space-induced depletion region in photoelectrodes severely exacerbates the recombination of electron-hole pairs, thereby reducing the photoelectrochemical (PEC) analytical performance. Herein, the chemical bond that can suppress the potential barrier and overcome the high energy barrier of out-of-plane Ohmic or Schottky contact is introduced into the PEC sensor to eliminate the depletion region and dramatically promote the separation of electron-hole pairs. Specifically, three-dimensional (3D) hierarchically wheatear-like TiO2 (HWT) nanostructures featuring a large surface area to absorb incident light are crafted as the substrate. The facile carbonized strategy is further employed to engineer the Ti-C chemical bond, serving as the touchstone. The average PL lifetime of HWT-C (4.14 ns) is much shorter than that of the 3D HWT (8.57 ns) due to the promoting effect of the chemically bonded structure on carrier separation. Consequently, the 3D HWT-C covalent photoelectrode (600 µA/cm2) exhibits a 3.6-fold increase in photocurrent density compared with the 3D HWT (167 µA/cm2). Ultimately, the model analyte of the tumor marker is detected, and the linear range is 0.02 ng/mL-100 ng/mL with a detection limitation of 0.007 ng/mL. This work provides a basic understanding of chemical bonds in tuning charge separation and insights on strategies for designing high-performance PEC sensors.


Assuntos
Biomarcadores Tumorais , Nanoestruturas , Animais , Elétrons
4.
Biosens Bioelectron ; 235: 115384, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244092

RESUMO

In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes , Humanos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Eletrodos , Testes Imediatos
5.
Stroke Vasc Neurol ; 8(4): 335-348, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854487

RESUMO

Hyperhomocysteinemia (HHcy) is independently associated with poorer long-term prognosis in patients with intracerebral haemorrhage (ICH); however, the effect and mechanisms of HHcy on ICH are still unclear. Here, we evaluated neurite outgrowth and neurological functional recovery using simulated models of ICH with HHcy in vitro and in vivo. We found that the neurite outgrowth velocity and motor functional recovery in the ICH plus HHcy group were significantly slower than that in the control group, indicating that homocysteine (Hcy) significantly impedes the neurite outgrowth recovery after ICH. Furthermore, phosphoproteomic data and signalome analysis of perihematomal brain tissues suggested that calmodulin-dependent protein kinases 2 (CAMK2A) kinase substrate pairs were significantly downregulated in ICH with HHcy compared with autologous blood injection only, both western blot and immunofluorescence staining confirmed this finding. Additionally, upregulation of pCAMK2A significantly increased neurite outgrowth recovery in ICH with HHcy. Collectively, we clarify the mechanism of HHcy-hindered neurite outgrowth recovery, and pCAMK2A may serve as a therapeutic strategy for promoting neurological recovery after ICH.


Assuntos
Hemorragia Cerebral , Homocisteína , Humanos , Hemorragia Cerebral/complicações , Regulação para Cima , Crescimento Neuronal
6.
Rev Sci Instrum ; 93(12): 123102, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586897

RESUMO

Owing to the parasitic vibration effect of the cooling medium and pipes of X-ray optics, the vibration decoupling cooling method based on eutectic gallium-indium (EGaIn) alloy has become very crucial for fourth generation synchrotron radiation advanced light sources. However, there is an issue that the corrosion of the EGaIn alloy to the heat sink metal [e.g., copper (Cu) plate] results in the solidification and the failure of eliminating the parasitic vibration effect. To deal with the problem, a novel anti-corrosion coating based on tungsten (W) is presented in this paper. It possesses better corrosion resistance performance compared with the traditional coating of nickel (Ni). The experimental investigation was carried out, in which the EGaIn alloy was exposed to several typical metal materials in conditions of various time durations and various temperatures, which were considered as controls. Furthermore, the corrosion effects are analyzed and evaluated in two aspects of micromorphology and the chemical composition by using an optical microscope and a scanning electron microscope as well as x-ray diffraction. The results show that non obvious corrosion occurred for W, 0.33 mm and 48 µm thick transition micro-area, respectively, for Cu and Ni. In addition, new substances CuGa2 and Ni3Ga7 occurred, respectively, for Cu and Ni for 36 hours at 250 °C. The EGaIn alloy will freeze after corroding 18 µm substrate for Ni or 30 µm for Cu. Furthermore, the W coating that was prepared by magnetron sputtering has been implemented for feasibility validation.

7.
Anal Chem ; 94(23): 8327-8334, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635766

RESUMO

Herein, a hand-drawing paper-based bipolar electrode (BPE) electrochemiluminescence (ECL) platform for M.SssI methyltransferase (M.SssI MTase) assay was proposed via employing high electrocatalytic Pt@CeO2 as an ECL co-reaction accelerator and pencil-drawing graphite electric circuits as wires and electrodes. Notably, the introduction of pencil-drawing trace not only simplified the manufacturing process but also reduced the cost and saved fabricating time. Meanwhile, Pt@CeO2 with good electrocatalytic activity and satisfactory chemical stability was used at the anode of the closed BPE-ECL device to accelerate the oxidation rate of uric acid. Due to the balanced charges of the bipolar electrode, the ECL response of the MnS: CdS@ZnS/S2O82- system emitted on the cathode was enhanced. In situ growth of gold nanoparticles in the two electrode areas was convenient for DNA immobilization. With the above points in mind, the specific DNA double strands functionalized via Pt@CeO2 were employed to identify M.SssI MTase. The unmethylated DNA double strands were cut by HpaII endonuclease, resulting in the quenching of the ECL signal. Under the optimal conditions, sensitive detection of M.SssI MTase in a wide linear range of 0.01-100 U·mL-1 with a satisfactory detection limit of 0.008 U·mL-1 was realized. The reliable and versatile BPE-ECL tool for the determination of M.SssI MTase with easy-to-operate pencil-drawing traces and independent solution systems provides a new opportunity to develop paper-based devices applied in early disease diagnosis and pathogenesis research.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , DNA , DNA-Citosina Metilases , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro , Medições Luminescentes/métodos , Metiltransferases
8.
Dis Markers ; 2022: 1407183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154509

RESUMO

INTRODUCTION: Rising studies indicate that the apolipoprotein E (APOE) gene is related to the susceptibility of ischemic stroke (IS). However, certain consensus is limited by the lack of a large sample size of researches. This meta-analysis was performed to explore the potential association between the APOE gene and IS. METHODS: To identify relevant case control studies in English publications by October 2020, we searched PubMed, Embase, Web of Science, and the Cochrane Library. Pooled odds ratios (ORs) with fixed- or random-effect models and corresponding 95% confidence intervals (CIs) were calculated to analyze potential associations. RESULTS: A total of 55 researches from 32 countries containing 12207 IS cases and 27742 controls were included. The association between APOE gene ε4 mutation and IS was confirmed (ε4 vs. ε3 allele: pooled OR = 1.374, 95% CI, 1.214-1.556; ε2/ε4 vs. ε3/ε3: pooled OR = 1.233, 95% CI, 1.056-1.440; ε3/ε4 vs. ε3/ε3: pooled OR = 1.340, 95% CI, 1.165-1.542; ε4/ε4 vs. ε3/ε3: pooled OR = 1.833, 95% CI, 1.542-2.179; and APOE ε4 carriers vs. non-ε4 carriers: pooled OR = 1.377; 95% CI, 1.203-1.576). Interestingly, APOE ε4 mutation showed a dose-response correlation with IS risk (ε4/ε4 vs. ε2/ε4: pooled OR = 1.625; 95% CI, 1.281-2.060; ε4/ε4 vs. ε3/ε4: pooled OR = 1.301; 95% CI, 1.077-1.571). Similar conclusions were drawn in the small artery disease (SAD) subtype, but not in large artery atherosclerosis (LAA) or in cardioaortic embolism (CE), by subgroup analysis. CONCLUSIONS: These observations reveal that specific APOE ε4 mutation was significantly associated with the risk of IS in a dose-dependent manner, while APOE ε4 mutation was related to SAD subtype onset without a cumulative effect.


Assuntos
Apolipoproteína E4/genética , AVC Isquêmico/genética , Polimorfismo Genético , Humanos , AVC Isquêmico/epidemiologia , Fatores de Risco
9.
Anal Chem ; 94(3): 1705-1712, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014798

RESUMO

Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Retroalimentação , Ouro , Limite de Detecção , Nanopartículas Metálicas/química , Ocratoxinas , Reprodutibilidade dos Testes
10.
J Neurointerv Surg ; 14(9): 881-885, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34544824

RESUMO

BACKGROUND: Despite successful recanalization after endovascular treatment, many patients with acute ischemic stroke due to large vessel occlusion still show functional dependence, namely futile recanalization. METHODS: PubMed and Embase were searched up to April 30, 2021. Studies that reported risk factors for futile recanalization following endovascular treatment of acute ischemic stroke were included. The mean difference (MD) or odds ratio (OR) and 95% confidence interval (95% CI) of each study were pooled for a meta-analysis. RESULTS: Twelve studies enrolling 2138 patients were included. The pooled analysis showed that age (MD 5.81, 95% CI 4.16 to 7.46), female sex (OR 1.40, 95% CI 1.16 to 1.68), National Institutes of Health Stroke Scale (NIHSS) score (MD 4.22, 95% CI 3.38 to 5.07), Alberta Stroke Program Early CT Score (ASPECTS) (MD -0.71, 95% CI -1.23 to -0.19), hypertension (OR 1.73, 95% CI 1.43 to 2.09), diabetes (OR 1.78, 95% CI 1.41 to 2.24), atrial fibrillation (OR 1.24, 95% CI 1.01 to 1.51), admission systolic blood pressure (MD 4.98, 95% CI 1.87 to 8.09), serum glucose (MD 0.59, 95% CI 0.37 to 0.81), internal carotid artery occlusion (OR 1.85, 95% CI 1.17 to 2.95), pre-treatment intravenous thrombolysis (OR 0.67, 95% CI 0.55 to 0.83), onset-to-puncture time (MD 16.92, 95% CI 6.52 to 27.31), puncture-to-recanalization time (MD 12.37, 95% CI 7.96 to 16.79), and post-treatment symptomatic intracerebral hemorrhage (OR 6.09, 95% CI 3.18 to 11.68) were significantly associated with futile recanalization. CONCLUSION: This study identified female sex, comorbidities, admission systolic blood pressure, serum glucose, occlusion site, non-bridging therapy, and post-procedural complication as predictors of futile recanalization, and also confirmed previously reported factors. Further large-scale prospective studies are needed.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Procedimentos Endovasculares/efeitos adversos , Feminino , Glucose , Humanos , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia/efeitos adversos , Terapia Trombolítica/efeitos adversos , Resultado do Tratamento
11.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769046

RESUMO

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 µg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


Assuntos
Antibacterianos/farmacologia , Gentamicinas/farmacologia , Pirazóis/farmacologia , Streptococcus pyogenes/efeitos dos fármacos , Sulfonamidas/farmacologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Choque Séptico/tratamento farmacológico , Infecções Estreptocócicas/tratamento farmacológico , Células U937
12.
J Am Heart Assoc ; 10(22): e023077, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726065

RESUMO

Background Remote limb ischemic postconditioning (RLIPoC) has been demonstrated to protect against ischemic stroke. However, the underlying mechanisms of RLIPoC mediating cross-organ protection remain to be fully elucidated. Methods and Results Ischemic stroke was induced by middle cerebral artery occlusion for 60 minutes. RLIPoC was performed with 3 cycles of 10-minute ischemia followed by 10-minute reperfusion of the bilateral femoral arteries immediately after middle cerebral artery reperfusion. The percentage of regulatory T cells (Tregs) in the spleen, blood, and brain was detected using flow cytometry, and the number of Tregs in the ischemic hemisphere was counted using transgenic mice with an enhanced green fluorescent protein-tagged Foxp3. Furthermore, the metabolic status was monitored dynamically using a multispectral optical imaging system. The Tregs were conditionally depleted in the depletion of Treg transgenic mice after the injection of the diphtheria toxin. The inflammatory response and neuronal apoptosis were investigated using immunofluorescent staining. Infarct volume and neurological deficits were evaluated using magnetic resonance imaging and the modified neurological severity score, respectively. The results showed that RLIPoC substantially reduced infarct volume, improved neurological function, and significantly increased Tregs in the spleen, blood, and ischemic hemisphere after middle cerebral artery occlusion. RLIPoC was followed by subsequent alteration in metabolites, such as flavin adenine dinucleotide and nicotinamide adenine dinucleotide hydrate, both in RLIPoC-conducted local tissues and circulating blood. Furthermore, nicotinamide adenine dinucleotide hydrate can mimic RLIPoC in increasing Tregs. Conversely, the depletion of Tregs using depletion of Treg mice compromised the neuroprotective effects conferred by RLIPoC. Conclusions RLIPoC protects against ischemic brain injury, at least in part by activating and maintaining the Tregs through the nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrate pathway.


Assuntos
Isquemia Encefálica , Pós-Condicionamento Isquêmico , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média , Isquemia , Camundongos , Camundongos Transgênicos , NAD , Acidente Vascular Cerebral/prevenção & controle , Linfócitos T Reguladores
13.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638904

RESUMO

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Assuntos
Imunidade Inata/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Movimento Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Transdução de Sinais/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia
14.
Front Pharmacol ; 12: 751397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658892

RESUMO

Transient ischemic attack (TIA) has been widely regarded as a clinical entity. Even though magnetic resonance imaging (MRI) results of TIA patients are negative, potential neurovascular damage might be present, and may account for long-term cognitive impairment. Animal models that simulate human diseases are essential tools for in-depth study of TIA. Previous studies have clarified that Dl-3-N-butylphthalide (NBP) promotes angiogenesis after stroke. However, the effects of NBP on TIA remain unknown. This study aims to develop an optimized TIA model in C57BL/6 mice to explore the microscopic evidence of ischemic injury after TIA, and investigate the therapeutic effects of NBP on TIA. C57BL/6 mice underwent varying durations (7, 8, 9 or 10 min) of middle cerebral artery occlusion (MCAO). Cerebral artery occlusion and reperfusion were assessed by laser speckle contrast imaging. TIA and ischemic stroke were distinguished by neurological testing and MRI examination at 24 h post-operation. Neuronal apoptosis was examined by TUNEL staining. Images of submicron cerebrovascular networks were obtained via micro-optical sectioning tomography. Subsequently, the mice were randomly assigned to a sham-operated group, a vehicle-treated TIA group or an NBP-treated TIA group. Vascular density was determined by immunofluorescent staining and fluorescein isothiocyanate method, and the expression of angiogenic growth factors were detected by western blot analysis. We found that an 8-min or shorter period of ischemia induced neither permanent neurological deficits nor MRI detectable brain lesions in C57BL/6 mice, but histologically caused neuronal apoptosis and cerebral vasculature abnormalities. NBP treatment increased the number of CD31+ microvessels and perfused microvessels after TIA. NBP also up-regulated the expression of VEGF, Ang-1 and Ang-2 and improved the cerebrovascular network. In conclusion, 8 min or shorter cerebral ischemia induced by the suture MCAO method is an appropriate TIA model in C57BL/6 mice, which conforms to the definition of human TIA, but causes microscopic neurovascular impairment. NBP treatment increased the expression of angiogenic growth factors, promoted angiogenesis and improved cerebral microvessels after TIA. Our study provides new insights on the pathogenesis and potential treatments of TIA.

15.
J Neuroinflammation ; 18(1): 201, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526069

RESUMO

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. METHODS: Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. RESULTS: The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. CONCLUSION: Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4 , Autoanticorpos , Encéfalo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/patologia
16.
Front Immunol ; 12: 650782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367127

RESUMO

The changes in the serum levels of aquaporin-4-IgG (AQP4-IgG), immunoglobulins, and inflammatory mediators in neuromyelitis optica spectrum disorder (NMOSD) cases treated with immunoadsorption have been rarely described in detail. Here we report a 29-year-old steroid-resistant NMOSD female with a severe disability (bilateral blindness and paraplegia) who received protein-A immunoadsorption as a rescue treatment. During the total 5 sessions, the circulating level of AQP4-IgG, immunoglobulins, and complement proteins (C3 and C4) showed a rapid and sawtooth-like decrease, and the serum AQP4-IgG titer declined from 1:320 to below the detectable limit at the end of the 3rd procedure. Of all the antibodies, IgG had the biggest removal rate (>96.1%), followed by IgM (>66.7%) and IgA (53%), while complement C3 and C4 also dropped by 73% and 65%, respectively. The reduced pro-inflammatory cytokines (interleukin-8 and tumor necrosis factor-α) and marked increased lymphocyte (T and B cell) counts were also observed. The improvement of symptoms initiated after the last session, with a low AQP4-IgG titer (1:32) persisting thereafter. Accordingly, protein-A immunoadsorption treatment could be one of the potential rescue therapies for steroid-resistant NMOSD patients with a severe disability.


Assuntos
Aquaporina 4/imunologia , Biomarcadores/sangue , Imunoglobulina G/imunologia , Neuromielite Óptica/terapia , Plasmaferese/métodos , Proteína Estafilocócica A/imunologia , Adulto , Complemento C3/imunologia , Complemento C4/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Interleucina-8 , Contagem de Linfócitos , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
17.
Front Psychiatry ; 12: 664499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163383

RESUMO

Study Objectives: We conducted a meta-analysis to assess the effects of different regular exercise (lasting at least 2 months on a regular basis) on self-reported and physiological sleep quality in adults. Varied exercise interventions contained traditional physical exercise (e.g., walking, cycling) and mind-body exercise characterized by gentle exercise with coordination of the body (e.g., yoga). Methods: Procedures followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Systematical searches were conducted in three electronic databases (PubMed, Embase, and Web of Science) for relevant research that involved adult participants without pathological diseases receiving exercise intervention. The search strategy was based on the population, intervention, comparison, and outcome study design (PICOS) framework. The self-reported outcomes included varied rating scales of Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), and Epworth Sleepiness Scale (ESS). Subgroup meta-analyses of PSQI scores were conducted based on type of exercise, duration of intervention, and participants' age and gender. The physiological outcomes were measured by Actigraph. All meta-analyses were performed in a fixed or random statistic model using Revman software. Results: Twenty-two randomized controlled trials were included in the analysis. The overall analysis on subjective outcomes suggests that exercise interventions significantly improved sleep quality in adults compared with control interventions with lower PSQI (MD -2.19; 95% CI -2.96 to -1.41), ISI (MD -1.52; 95% CI -2.63 to -0.41), and ESS (MD -2.55; 95% CI -3.32 to -1.78) scores. Subgroup analyses of PSQI scores showed both physical and mind-body exercise interventions resulted in improvements of subjective sleep to the same extent. Interestingly, short-term interventions (≤3 months) had a significantly greater reduction in sleep disturbance vs. long-term interventions (>3 months). Regarding physiological sleep, few significant effects were found in various sleep parameters except the increased sleep efficiency in the exercise group vs. control group. Conclusions: Results of this systematic review suggest that regular physical as well as mind-body exercise primarily improved subjective sleep quality rather than physiological sleep quality in adults. Specifically, self-reported sleep quality, insomnia severity, and daytime sleepiness could be improved or ameliorated with treatment of exercise, respectively, evaluated by PSQI, ISI, and ESS sleep rating scales.

18.
Biosens Bioelectron ; 185: 113250, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915433

RESUMO

Exploring novel photoactive materials with high photoelectric conversion efficiency plays a crucial role in enhancing the analytical performance of paper-based photoelectrochemical (PEC) biosensor. SnO2, which possesses higher photostability and electron mobility, can be regarded as a promising photoactive material. Herein, paper-based one dimensional (1D) domed SnO2 nanotubes (NTs) have been developed with the template-consumption strategy. What's more, their growth mechanism has also been proposed based on the controllable experiments. At first, the paper-based 1D ZnO nanorods (NRs) as the typical amphoteric oxide are prepared and serve as the sacrifice templates which can be etched by the generated alkaline environment during the formation of SnO2. At a certain stage, all the ZnO NRs can be completely etched by controlling the experimental conditions, resulting in the forming of vertically distributed hollow SnO2 NTs. Furthermore, the Sn self-doping strategy is also proposed to suppress the recombination of charge carriers and broaden the light response range by introducing the impurity energy levels. Profiting from such doping strategy, the prominent photocurrent signal is obtained compared with pure paper-based SnO2 NTs. Ultimately, an innovative visible light responsive paper-based Sn-doping SnO2-x NTs are developed and employed as the photoelectrode for the PEC biosensor using the alpha fetoprotein (AFP) as the model analyte. Under the optimal conditions, the ultrasensitive AFP sensing is realized with the linear range and detection limitation of 10 pg mL-1 to 200 ng mL-1 and 3.84 pg mL-1, respectively. This work provides a judiciously strategy for developing novel photoactive materials for paper-based PEC bioanalysis.


Assuntos
Técnicas Biossensoriais , Nanotubos , Luz , Óxidos
19.
ACS Appl Mater Interfaces ; 13(17): 19793-19802, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886262

RESUMO

In this work, a self-circulation oxygen-hydrogen peroxide-oxygen (O2-H2O2-O2) system with photogenerated electrons as fuel and highly active hemin monomers as operators was engineered for ultrasensitive cathode photoelectrochemical bioassay of microRNA-141 (miRNA-141) using a stacked sealed paper device. During the circulation, the photogenerated electrons from BiVO4/Cu2O photosensitive structures assembled on a reduced graphene oxide paper electrode first reduced the electron acceptors (dissolved O2) to H2O2, which was then catalytically decomposed by hemin monomers to generate O2 again. The regenerated O2 continued to be reduced, which made O2 and H2O2 stuck in the infinite loop of O2-H2O2-O2 accompanied by the fast consumption of photogenerated electrons, generating an amplified photocurrent signal. When a target existed, a duplex-specific nuclease-induced target recycling reaction with dual trigger DNA probes as the output was performed to initiate the assembly of bridge-like DNA nanostructures, which endowed the self-circulation system with dual destruction functions as follows. (i) Reduced fuel supply: the assembled DNA bridges acting as a negatively charged barrier prevented the photogenerated electrons from participating in the O2 reduction to H2O2. (ii) Incapacitation of operators: DNA bridging induced the dimerization of hemin monomers linked on the DNA hairpins to catalytically inactive hemin dimers, leading to the abortive regeneration of O2. These destruction functions resulted in the circulation interruption and a remarkably decreased photocurrent signal. Thus, the developed cathode photoelectrochemical biosensing platform achieved ultrasensitive miRNA-141 detection with a linear range of 0.25 fM to 1 nM and a detection limit of 83 aM, and it also exhibited high accuracy, selectivity, and practicability.


Assuntos
Bioensaio/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Peróxido de Hidrogênio/química , MicroRNAs/análise , Oxigênio/química , Papel , Processos Fotoquímicos , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Limite de Detecção
20.
Neurobiol Dis ; 152: 105290, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556540

RESUMO

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Assuntos
Adaptação Fisiológica/fisiologia , Reprogramação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Animais , Sistema Nervoso Central/imunologia , Humanos , Metaboloma , Microglia/imunologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...