Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116753

RESUMO

As the most common post-translational protein modification, glycosylation is intimately linked to muscle atrophy. This study aimed to investigate the performance of protein glycosylation in the soleus muscle (SOL) in Daurian ground squirrels (Spermophilus dauricus) and to determine the potential role of protein glycosylation in the mechanism underlying disuse muscle atrophy prevention. The results showed that (1) seven glycan structures comprising sialic acid α2-3 galactose (SAα2-3Gal) were altered during hibernation; (2) alterations in the SAα2-3Gal structure during hibernation were based on changes in the expression levels of beta-galactoside alpha-2 and 3-sialyltransferases; and (3) α2-3-linked sialylated modifications of heat shock cognate 70 and pyruvate kinase and expression of 14-3-3 epsilon protein were oscillatorily changed during hibernation. Our findings indicate that the skeletal muscles of hibernating Daurian ground squirrels maintain protein sialylation homeostasis by restoring sialylation modification during periodic interbout arousal, which might protect the skeletal muscles against disuse atrophy.

2.
Chin Med J (Engl) ; 131(2): 180-187, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29336366

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the most common and serious microvascular complication of diabetes. To date, the gold standard for identifying DN and nondiabetic renal disease (NDRD) is a renal biopsy; however, there is currently no reliable diagnostic marker to identify DN and NDRD in a noninvasive manner. This study aimed to investigate the different glycopatterns in urine specimens of DN patients and NDRD patients for a differential diagnosis. METHODS: In total, 19 DN patients and 18 NDRD patients who underwent renal biopsies between March 2015 and March 2016 at the Chinese People's Liberation Army General Hospital were enrolled in this study. A lectin microarray was used to investigate the glycopatterns in the urinary protein of the 37 patients. Ratio analysis and one-way analysis of variance were used to screen altered glycopatterns. Then, the altered glycopatterns between the DN and NDRD groups were verified by a urinary protein microarray among another 32 patients (15 with DN and 17 with NDRD), and receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of the altered glycopatterns in differentiating DN and NDRD. Finally, lectin blotting was used to evaluate the altered glycosylation in protein level. RESULTS: The result of lectin microarrays revealed that the relative abundance of the (ß-1,4)-linked N-acetyl-D-glucosamine (GlcNAc) recognized by lectin Datura stramonium agglutinin (DSA) was significantly higher in urinary protein in DN patients than that in NDRD patients (fold change >1.50, P < 0.001). Subsequently, the results of urinary protein microarrays were consistent with lectin microarrays (P < 0.05). Furthermore, the ROC curve showed that glycopatterns could effectively distinguish DN from NDRD patients (area under the ROC curve = 0.94, P < 0.001). DSA lectin blotting showed that glycoproteins, with a molecular weight of approximately 50,000, demonstrated a difference in urine samples between DN patients and NDRD patients. CONCLUSIONS: The relative abundance of (ß-1,4)-linked GlcNAc recognized by lectin DSA and urinary glycoprotein with a molecular weight of approximately 50,000 are significantly different between DN and NDRD patients, indicating that the glycopatterns could be used as potential biomarkers for a differential diagnosis.


Assuntos
Datura stramonium , Nefropatias Diabéticas/diagnóstico , Glicoproteínas/urina , Nefropatias/diagnóstico , Lectinas de Plantas/metabolismo , Idoso , Nefropatias Diabéticas/urina , Diagnóstico Diferencial , Feminino , Humanos , Nefropatias/urina , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas
3.
Exp Cell Res ; 319(17): 2604-16, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954821

RESUMO

Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4 × 44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios ≥ 2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD.


Assuntos
Cardiomiopatias/genética , Infecções por Enterovirus/genética , Genes Mitocondriais , Fatores de Transcrição/genética , Transcrição Gênica , Adulto , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo , Regulação para Cima
4.
Arthritis Rheum ; 62(3): 771-80, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20131229

RESUMO

OBJECTIVE: To investigate the differences in gene expression profiles of adult articular cartilage from patients with Kashin-Beck disease (KBD) versus those with primary knee osteoarthritis (OA). METHODS: The messenger RNA expression profiles of articular cartilage from patients with KBD, diagnosed according to the clinical criteria for KBD in China, were compared with those of cartilage from patients with OA, diagnosed according to the Western Ontario and McMaster Universities OA Index. Total RNA was isolated separately from 4 pairs of the KBD and OA cartilage samples, and the expression profiles were evaluated by Agilent 4x44k Whole Human Genome density oligonucleotide microarray analysis. The microarray data for selected transcripts were confirmed by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) amplification. RESULTS: For 1.2 x 10(4) transcripts, corresponding to 58.4% of the expressed transcripts, 2-fold changes in differential expression were revealed. Expression levels higher in KBD than in OA samples were observed in a mean + or - SD 6,439 + or - 1,041 (14.6 + or - 2.4%) of the transcripts, and expression levels were lower in KBD than in OA samples in 6,147 + or - 1,222 (14.2 + or - 2.8%) of the transcripts. After application of the selection criteria, 1.85% of the differentially expressed genes (P < 0.001 between groups) were detected. These included 233 genes, of which 195 (0.4%) were expressed at higher levels and 38 (0.08%) were expressed at lower levels in KBD than in OA cartilage. Comparisons of the quantitative RT-PCR data supported the validity of our microarray data. CONCLUSION: Differences between KBD and OA cartilage exhibited a similar pattern among all 4 of the pairs examined, indicating the presence of disease mechanisms, mainly chondrocyte matrix metabolism, cartilage degeneration, and apoptosis induction pathways, which contribute to cartilage destruction in KBD.


Assuntos
Expressão Gênica , Osteoartrite do Joelho/genética , Osteoartrite/epidemiologia , Osteoartrite/genética , China/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...