Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673118

RESUMO

This study presents a comprehensive investigation into the mechanical properties of Basic Magnesium Sulfate Cement Concrete (BMSC) in comparison to Ordinary Portland Cement Concrete (OPC) within reinforced concrete components. The main objective is to evaluate BMSC's applicability for practical engineering purposes, with a focus on its with early high strength, improved toughness, and superior crack resistance compared to conventional concrete. Experimental procedures involved fabricating beam specimens using OPC concrete with a C40 strength grade, alongside BMSC beams with varying strength grades (C30, C40, and C50). These specimens underwent bending resistance tests to analyze crack patterns and mechanical characteristics. The findings reveal that BMSC beams demonstrate enhanced bending and tensile properties at equivalent strength grades compared to OPC beams. Particularly, cracking mainly occurred at the mid-span region of BMSC beams, characterized by narrower cracks, indicating superior crack resistance. However, it was noted that the toughness of BMSC beams decreases as the strength grade increases. The maximum mid-span deflection of the BMSC test beam was smaller than that of the OPC test beam, which was 3.8 mm and 2.6 mm, respectively. The maximum crack width of the OPC beam was 4.7 times that of the BMSC beam. To facilitate practical implementation, the study developed calculation models for estimating the crack bending distance and ultimate bending distance in BMSC beams, offering valuable tools for engineering design and optimization. Overall, this research provides significant insights into the mechanical behavior of BMSC, presenting potential advantages for structural engineering applications.

2.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473603

RESUMO

The durability of concrete is critical for the service life of concrete structures, and it is influenced by various factors. This paper investigates the impact of the relative humidity (RH) of the curing environment on the durability of five different concrete types. The aim is to determine a suitable approach for designing concrete that is well-suited for use in the salt lake region of Inner Mongolia. The concrete types comprise ordinary Portland cement (OPC), high-strength expansive concrete (HSEC), high-strength expansive concrete incorporating silica fume, fly ash, and blast furnace slag (HSEC-SFB), steel fiber-reinforced high-strength expansive concrete (SFRHSEC), and high elastic modulus polyethylene fiber-reinforced high-strength expansive concrete (HFRHSEC). All these concrete types underwent a 180-day curing process at three distinct relative humidities (RH = 30%, 50%, and 95%) before being subjected to freeze-thaw cycles in the Inner Mongolia salt lake brine. The curing environment with a 95% RH is referred to as the standard condition. The experimental results reveal that the durability of OPC and HSEC decreases significantly with increasing relative humidity. In comparison with the control sample cured in 95% RH, the maximum freeze-thaw cycles for concrete cured in lower RHs are only 31% to 76% for OPC and 66% to 77% for HSEC. However, the sensitivity of the durability of HSEC-SFB, SFRHSEC, and HFRHSEC to variations in RH in the curing environment diminishes. In comparison with the corresponding reference value, the maximum freeze-thaw cycles for samples cured in dry conditions increase by 14% to 17% for HSEC-SFB and 21% for SFRHSEC. Specifically, the service life of HFRHSEC cured in a low RH is 25% to 46% higher than the reference value. The durability of HSEC-SFB, SFRHSEC, and HFRHSEC has been proven to be appropriate for structures located in the salt lake region of Inner Mongolia.

3.
Materials (Basel) ; 16(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37297158

RESUMO

The penetration resistance of the new material Basic Magnesium Sulfate Cement (BMSC) is studied through comprehensive application of an experimental and numerical simulation method. This paper consists of three parts. The first part introduces the preparation of Basic Magnesium Sulfate Cement Concrete (BMSCC) and the study of its dynamic mechanical properties. In the second part, on-site testing was carried out on both BMSCC and an ordinary Portland cement concrete (OPCC) target, and the anti-penetration performance of the two materials was analyzed and compared from three aspects: penetration depth, crater diameter and volume, and failure mode. In the last part, the numerical simulation analysis was carried out based on LS-DYNA, and the effects of factors, such as material strength and penetration velocity on the penetration depth, are analyzed. According to the results, the BMSCC targets have better penetration resistance performance than OPCC under the same conditions, mainly manifested in smaller penetration depth, smaller crater diameter and volume, as well as fewer cracks.

4.
ACS Sustain Chem Eng ; 11(8): 3194-3207, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36874194

RESUMO

The effect of ultrafine fly ash (UFA) and fly ash (FA) on the physical properties, phase assemblage, and microstructure of magnesium potassium phosphate cement (MKPC) was investigated. This study revealed that the UFA addition does not affect the calorimetry hydration peak associated with MKPC formation when normalized to the reactive components (MgO and KH2PO4). However, there is an indication that greater UFA additions lead to an increased reaction duration, suggesting the potential formation of secondary reaction products. The addition of a UFA:FA blend can delay the hydration and the setting time of MKPC, enhancing workability. MgKPO4·6H2O was the main crystalline phase observed in all systems; however, at low replacement levels in the UFA-only system (<30 wt %), Mg2KH(PO4)2·15H2O was also observed by XRD, SEM/EDS, TGA, and NMR (31P MAS, 1H-31P CP MAS). Detailed SEM/EDS and MAS NMR investigations (27Al, 29Si, 31P) demonstrated that the role of UFA and UFA:FA was mainly as a filler and diluent. Overall, the optimized formulation was determined to contain 40 wt % fly ash (10 wt % UFA and 30 wt % FA (U10F30)), which achieved the highest compressive strength and fluidity and produced a dense microstructure.

5.
J Hazard Mater ; 446: 130720, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610345

RESUMO

To solve the environmental problems caused by heavy metal pollution, a new cementitious material (basic magnesium sulfate cement, BMSC) was developed for the solidification of Cu2+/Zn2+. First, the effects of different amounts of Cu2+/Zn2+ on the properties (compressive strength, setting time, pH, and leaching toxicity) of the BMSC were investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the effects of different amounts of Cu2+/Zn2+ on the phase and microstructure of BMSC. The results showed that Cu2+/Zn2+ inhibited the hydration of BMSC, reduced compressive strength, and prolonged the setting time. The results of the leaching tests showed that the BMSC system exhibited high immobilization efficiency (up to 99%) for Cu2+/Zn2+. Further, the BMSC solidification matrix exhibited excellent acid resistance (compressive strength >40 MPa after 28 days of immersion). The physical phase analysis showed that the main phases of BMSC were the 5Mg(OH)2-MgSO4-7 H2O (5-1-7) phase and Mg(OH)2, and the crystal structure refinement analysis suggested that Cu2+/Zn2+ ions were substituted with Mg2+ in the 5-1-7 phase. It was confirmed that the solidification mechanism of BMSC on Cu2+/Zn2+ is mainly performed by chemical complexation and ionic substitution.

6.
Environ Res ; 214(Pt 2): 113912, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863442

RESUMO

Herein, to reduce CO2 emissions and energy consumption and to promote the recycling of waste resources, two types of boron-containing MgO by-products, which were obtained by lithium extraction from Qarhan Salt Lake, China, were used as substitutes for dead-burned MgO to prepare magnesium phosphate potassium cement (MKPC) as a rapid repair material. First, the phase composition and particle-size distribution of the MgO by-product were investigated. The effects of different MgO sources, molar ratio of MgO to KH2PO4 (M/P), and curing age on the setting time and mechanical properties of MKPC were then studied. Based on the results, the mix proportion of MKPC was optimized. Finally, X-ray diffractometry, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), differential thermogravimetric (DTG) analysis, and mercury intrusion porosimetry were used to characterize the phase and microstructure evolution of MKPC prepared with different MgO contents. The results demonstrated that the by-product MgO prolonged the setting time of MKPC to more than 40 min. In addition, in the initial stage of hydration, the compressive strength of the MgO by-product was slightly lower than that of the dead-burned MgO; however, with increasing age, the mechanical properties of MKPC prepared by by-product MgO were excellent (up to 60 MPa). The phase and microstructure results revealed that the main hydration product of MKPC prepared using the three types of MgO was MgKPO4·6H2O. Combined with the physical and chemical properties of the raw materials, it was confirmed that the larger particle size and the coexisting impurities from the salt lake were the main reasons for the longer setting time of the MKPC prepared by the by-product MgO. We believe that this research will be of great significance for the preparation of low-carbon, low-cost, and high-performance MKPC materials.


Assuntos
Óxido de Magnésio , Magnésio , Carbono , Lagos , Compostos de Magnésio , Fosfatos , Potássio , Compostos de Potássio , Difração de Raios X
7.
Constr Build Mater ; 266: 121076, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33343100

RESUMO

Silica fume (SF) as an important supplementary cementitious material has been widely used in Portland cement, but few published articles have reported on the effect of SF on the performance and hydration mechanism of basic magnesium sulfate cement (BMSC). In the present work, the properties, microstructure and hydration mechanism of BMSC influenced by SF was studied systematically. The results show that the setting time and compressive strength of BMSC may increase with the increase of SF content, while the hydration heat will decrease with the increase of SF content. Mercury intrusion porosimetry (MIP), X-ray computed tomography (X-CT), scanning electron microscope- Energy dispersive spectrometer (SEM-EDS) results show that SF exhibits filling effect in the BMSC matrix, which makes the microstructure of BMSC matrix with SF more compact. In addition, solid-state magnetic resonance (NMR) and SEM-EDS analysis indicate that the activity of SF was excited in the BMSC matrix, resulting in the formation of M-S-H gel.

8.
ACS Omega ; 5(43): 27846-27856, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163767

RESUMO

Basic magnesium sulfate cement is a type of green high-performance cementitious material. In order to exert its performance advantages and expand its application field, it is urgent to study the problem of steel corrosion in basic magnesium sulfate cement concrete (BMSCC). In this paper, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of steel bars in different strength grades of BMSCC in seawater. Based on the relationship between the corrosion current density and the immersion time, the corresponding time-varying model was obtained. The LPR and EIS results show that the corrosion potential and polarization resistance of steel bars in BMSCC decreased with the immersion time in the seawater environment. The fitting analysis indicated concordance between the corrosion rates with the logarithmic function time-varying model. Furthermore, the cracking time of the protective layer of BMSCC was analyzed based on the cracking time prediction model of Portland cement concrete and the mechanical properties of BMSCC.

9.
Mater Sci Eng C Mater Biol Appl ; 79: 894-900, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629094

RESUMO

A novel magnesium potassium phosphate chemically bonded ceramic (MKPCBC) was prepared as a byproduct of boron-containing magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. In this work, the influence of glucose on the properties of MKPCBC, such as the setting time, compressive strength and hydration heat, was investigated. In addition, we studied the effect of the magnesium-phosphate ratio (M/P) and liquid-solid ratio (L/S) on the injectability of MKPCBC. The pH change in glucose modified MKPCBC paste was also investigated. The phase composition and microstructure were studied in detail by using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). The results show that the optimal content of glucose is 6wt%. The optimum proportions of M/P and L/S for MKPCBC are 1.5 and 0.25, respectively. The properties of the novel MPCBC can meet the requirements of biomaterials. In addition, the retardation mechanism of glucose on MKPCBC and the hydration mechanism of novel MKPCBC were studied in detail through the continuous monitoring of the phase composition and microstructure.


Assuntos
Cerâmica , Glucose , Magnésio , Teste de Materiais , Microscopia Eletrônica de Varredura , Fosfatos , Compostos de Potássio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...