Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1010137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068103

RESUMO

Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.


Assuntos
Genoma , Genômica , Humanos , Análise de Sequência de DNA/métodos , DNA
2.
PLoS Pathog ; 19(3): e1011230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940219

RESUMO

In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.


Assuntos
Genoma de Protozoário , Leishmaniose Cutânea , Parasitologia , Pele , Genoma de Protozoário/genética , Humanos , Genética Populacional , Pele/parasitologia , Brasil , Leishmaniose Cutânea/parasitologia , Parasitologia/métodos , Leishmania braziliensis/genética
3.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30808649

RESUMO

The immunoglobulin heavy variable (IGHV) and T cell beta variable (TRBV) loci are among the most complex and variable regions in the human genome. Generated through a process of gene duplication/deletion and diversification, these loci can vary extensively between individuals in copy number and contain genes that are highly similar, making their analysis technically challenging. Here, we present a comprehensive study of the functional gene segments in the IGHV and TRBV loci, quantifying their copy number and single-nucleotide variation in a globally diverse sample of 109 (IGHV) and 286 (TRBV) humans from over a 100 populations. We find that the IGHV and TRBV gene families exhibit starkly different patterns of variation. In addition to providing insight into the different evolutionary paths of the IGHV and TRBV loci, our results are also important to the adaptive immune repertoire sequencing community, where the lack of frequencies of common alleles and copy number variants is hampering existing analytical pipelines.


Assuntos
Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Genoma Humano/genética , Região Variável de Imunoglobulina/genética , Polimorfismo de Nucleotídeo Único/genética , Imunidade Adaptativa/genética , Alelos , Sequência de Bases/genética , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Duplicação Gênica , Frequência do Gene , Loci Gênicos , Haplótipos , Humanos , Mutação/genética
4.
PLoS Comput Biol ; 12(9): e1005117, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632220

RESUMO

The study of genomic regions that contain gene copies and structural variation is a major challenge in modern genomics. Unlike variation involving single nucleotide changes, data on the variation of copy number is difficult to collect and few tools exist for analyzing the variation between individuals. The immunoglobulin heavy variable (IGHV) locus, which plays an integral role in the adaptive immune response, is an example of a complex genomic region that varies in gene copy number. Lack of standard methods to genotype this region prevents it from being included in association studies and is holding back the growing field of antibody repertoire analysis. Here we develop a method that takes short reads from high-throughput sequencing and outputs a genetic profile of the IGHV locus with the read coverage depth and a putative nucleotide sequence for each operationally defined gene cluster. Our operationally defined gene clusters aim to address a major challenge in studying the IGHV locus: the high sequence similarity between gene segments in different genomic locations. Tests on simulated data demonstrate that our approach can accurately determine the presence or absence of a gene cluster from reads as short as 70 bp. More detailed resolution on the copy number of gene clusters can be obtained from read coverage depth using longer reads (e.g., ≥ 100 bp). Detail at the nucleotide resolution of single copy genes (genes present in one copy per haplotype) can be determined with 250 bp reads. For IGHV genes with more than one copy, accurate nucleotide-resolution reconstruction is currently beyond the means of our approach. When applied to a family of European ancestry, our pipeline outputs genotypes that are consistent with the family pedigree, confirms existing multigene variants and suggests new copy number variants. This study paves the way for analyzing population-level patterns of variation in IGHV gene clusters in larger diverse datasets and for quantitatively handling regions of copy number variation in other structurally varying and complex loci.


Assuntos
Biologia Computacional/métodos , Variações do Número de Cópias de DNA/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Análise de Sequência de DNA/métodos , Análise por Conglomerados , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...