Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024250

RESUMO

Cancer immunotherapy enhances the body's natural immune system to combat cancer, offering the advantage of lowered side effects compared to traditional treatments because of its high selectivity and efficacy. Utilizing computational methods to identify tumor T cell antigens (TTCAs) is valuable in unraveling the biological mechanisms and enhancing the effectiveness of immunotherapy. In this study, we present ENCAP, a predictor for TTCA based on ensemble classifiers and diverse sequence features. Sequences were encoded as a feature vector of 4349 entries based on 57 different feature types, followed by feature engineering and hyperparameter optimization for machine learning models, respectively. The selected feature subsets of ENCAP are primarily composed of physicochemical properties, with several features specifically related to hydrophobicity and amphiphilicity. Two publicly available datasets were used for performance evaluation. ENCAP yields an AUC (Area Under the ROC Curve) of 0.768 and an MCC (Matthew's Correlation Coefficient) of 0.522 on the first independent test set. On the second test set, it achieves an AUC of 0.960 and an MCC of 0.789. Performance evaluations show that ENCAP generates 4.8% and 13.5% improvements in MCC over the state-of-the-art methods on two popular TTCA datasets, respectively. For the third test dataset of 71 experimentally validated TTCAs from the literature, ENCAP yields prediction accuracy of 0.873, achieving improvements ranging from 12% to 25.7% compared to three state-of-the-art methods. In general, the prediction accuracy is higher for sequences of fewer hydrophobic residues, and more hydrophilic and charged residues. The source code of ENCAP is freely available at https://github.com/YnnJ456/ENCAP.


Assuntos
Antígenos de Neoplasias , Biologia Computacional , Antígenos de Neoplasias/imunologia , Humanos , Biologia Computacional/métodos , Neoplasias/imunologia , Linfócitos T/imunologia , Aprendizado de Máquina , Algoritmos , Curva ROC
2.
Sci Rep ; 14(1): 14387, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909149

RESUMO

Angiogenesis is a key process for the proliferation and metastatic spread of cancer cells. Anti-angiogenic peptides (AAPs), with the capability of inhibiting angiogenesis, are promising candidates in cancer treatment. We propose AAPL, a sequence-based predictor to identify AAPs with machine learning models of improved prediction accuracy. Each peptide sequence was transformed to a vector of 4335 numeric values according to 58 different feature types, followed by a heuristic algorithm for feature selection. Next, the hyperparameters of six machine learning models were optimized with respect to the feature subset. We considered two datasets, one with entire peptide sequences and the other with 15 amino acids from peptide N-termini. AAPL achieved Matthew's correlation coefficients of 0.671 and 0.756 for independent tests based on the two datasets, respectively, outperforming existing predictors by a range of 5.3% to 24.6%. Further analyses show that AAPL yields higher prediction accuracy for peptides with more hydrophobic residues, and fewer hydrophilic and charged residues. The source code of AAPL is available at https://github.com/yunzheng2002/Anti-angiogenic .


Assuntos
Inibidores da Angiogênese , Aprendizado de Máquina , Peptídeos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Algoritmos , Sequência de Aminoácidos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...