Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 673, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253589

RESUMO

CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.


Assuntos
Sistemas CRISPR-Cas , RNA , Animais , Camundongos , RNA/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Edição de RNA/genética , Interferência de RNA , Mamíferos
2.
Sci Rep ; 11(1): 231, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420199

RESUMO

Alcohol use disorder exhausts substantial social and economic costs, with recent dramatic increases in female problem drinking. Thus, it is critically important to understand signaling differences underlying alcohol consumption across the sexes. Orexin-1 receptors (Ox1Rs) can strongly promote motivated behavior, and we previously identified Ox1Rs within nucleus accumbens shell (shell) as crucial for driving binge intake in higher-drinking male mice. Here, shell Ox1R inhibition did not alter female mouse alcohol drinking, unlike in males. Also, lower dose systemic Ox1R inhibition reduced compulsion-like alcohol intake in both sexes, indicating that female Ox1Rs can drive some aspects of pathological consumption, and higher doses of systemic Ox1R inhibition (which might have more off-target effects) reduced binge drinking in both sexes. In contrast to shell Ox1Rs, inhibiting shell calcium-permeable AMPA receptors (CP-AMPARs) strongly reduced alcohol drinking in both sexes, which was specific to alcohol since this did not reduce saccharin intake in either sex. Our results together suggest that the shell critically regulates binge drinking in both sexes, with shell CP-AMPARs supporting intake in both sexes, while shell Ox1Rs drove drinking only in males. Our findings provide important new information about sex-specific and -general mechanisms that promote binge alcohol intake and possible targeted therapeutic interventions.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Orexina/metabolismo , Receptores de AMPA/metabolismo , Animais , Feminino , Masculino , Camundongos , Caracteres Sexuais
3.
Front Neurosci ; 13: 88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814925

RESUMO

Excessive, binge alcohol drinking is a potent and pernicious obstacle to treating alcohol use disorder (AUD), and heavy-drinking humans are responsible for much of the substantial costs and harms of AUD. Thus, identifying key mechanisms that drive intake in higher-drinking individuals may provide important, translationally useful therapeutic interventions. Orexin-1-receptors (Ox1Rs) promote states of high motivation, and studies with systemic Ox1R inhibition suggest a particular role in individuals with higher intake levels. However, little has been known about circuits where Ox1Rs promote pathological intake, especially excessive alcohol consumption. We previously discovered that binge alcohol drinking requires Ox1Rs in medial nucleus accumbens shell (Shell), using two-bottle-choice Drinking-in-the-Dark (2bc-DID) in adult, male C57BL/6 mice. Here, we show that Shell Ox1Rs promoted intake during intermittent-access alcohol drinking as well as 2bc-DID, and that Shell inhibition with muscimol/baclofen also suppressed 2bc-DID intake. Importantly, with this large data set, we were able to demonstrate that Shell Ox1Rs and overall activity were particularly important for driving alcohol consumption in higher-drinking individuals, with little overall impact in moderate drinkers. Shell inhibition results were compared with control data combined from drug treatments that did not reduce intake, including NMDAR or PKC inhibition in Shell, Ox1R inhibition in accumbens core, and systemic inhibition of dopamine-1 receptors; these were used to understand whether more specific Shell Ox1R contributions in higher drinkers might simply result from intrinsic variability in mouse drinking. Ineffectiveness of Shell inhibition in moderate-drinkers was not due to a floor effect, since systemic baclofen reduced alcohol drinking regardless of basal intake levels, without altering concurrent water intake or saccharin consumption. Finally, alcohol intake in the first exposure predicted consumption levels weeks later, suggesting that intake level may be a stable trait in each individual. Together, our studies indicate that Shell Ox1Rs are critical mediators of binge alcohol intake in higher-drinking individuals, with little net contribution to alcohol drinking in more moderate bingers, and that targeting Ox1Rs may substantially reduce AUD-related harms.

4.
Alcohol ; 55: 9-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27788780

RESUMO

Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 µM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine-resistant alcohol drinking patterns, this model provides a simple, quick, and robust method for uncovering the mechanisms that promote aversion-resistant consumption.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Aprendizagem da Esquiva/fisiologia , Comportamento de Escolha/fisiologia , Etanol/administração & dosagem , Motivação/fisiologia , Paladar/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinina/administração & dosagem , Paladar/efeitos dos fármacos
5.
Neuropharmacology ; 110(Pt A): 431-437, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27523303

RESUMO

Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 µM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin + quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs.


Assuntos
Dissuasores de Álcool/farmacologia , Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Benzoxazóis/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Antagonistas dos Receptores de Orexina/farmacologia , Ureia/análogos & derivados , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/metabolismo , Transtornos Relacionados ao Uso de Álcool/metabolismo , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Comportamento Compulsivo/metabolismo , Relação Dose-Resposta a Droga , Isoquinolinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Naftiridinas , Receptores de Orexina/metabolismo , Piridinas/farmacologia , Quinina , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...