Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964734

RESUMO

INTRODUCTION: Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial. OBJECTIVES: To elucidate the function and mechanism of RNF128 in colitis and CRC. METHODS: Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling. RESULTS: RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis. CONCLUSION: RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.

2.
Cell Commun Signal ; 22(1): 254, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702781

RESUMO

IL-3/STAT5 signaling pathway is crucial for the development and activation of immune cells, contributing to the cellular response to infections and inflammatory stimuli. Dysregulation of the IL-3/STAT5 signaling have been associated with inflammatory and autoimmune diseases characterized by inflammatory cell infiltration and organ damage. IL-3 receptor α (IL-3Rα) specifically binds to IL-3 and initiates intracellular signaling, resulting in the phosphorylation of STAT5. However, the regulatory mechanisms of IL-3Rα remain unclear. Here, we identified the E3 ubiquitin ligase RNF128 as a negative regulator of IL-3/STAT5 signaling by targeting IL-3Rα for lysosomal degradation. RNF128 was shown to selectively bind to IL-3Rα, without interacting with the common beta chain IL-3Rß, which shares the subunit with GM-CSF. The deficiency of Rnf128 had no effect on GM-CSF-induced phosphorylation of Stat5, but it resulted in heightened Il-3-triggered activation of Stat5 and increased transcription of the Id1, Pim1, and Cd69 genes. Furthermore, we found that RNF128 promoted the K27-linked polyubiquitination of IL-3Rα in a ligase activity-dependent manner, ultimately facilitating its degradation through the lysosomal pathway. RNF128 inhibited the activation and chemotaxis of macrophages in response to LPS stimulation, thereby attenuating excessive inflammatory responses. Collectively, these results reveal that RNF128 negatively regulates the IL-3/STAT5 signaling pathway by facilitating K27-linked polyubiquitination of IL-3Rα. This study uncovers E3 ubiquitin ligase RNF128 as a novel regulator of the IL-3/STAT5 signaling pathway, providing potential molecular targets for the treatment of inflammatory diseases.


Assuntos
Interleucina-3 , Fator de Transcrição STAT5 , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitinação , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Animais , Interleucina-3/metabolismo , Camundongos , Lisossomos/metabolismo , Células HEK293 , Fosforilação , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-3/genética
3.
J Cell Physiol ; 238(10): 2348-2360, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565597

RESUMO

Innate immunity is the first line of defense against infections, which functions as a significant role in resisting pathogen invasion. Rapid immune response is initiated by pattern recognition receptors (PRRs) quickly distinguishing "self" and "non-self." Upon evolutionarily conserved pathogen-associated molecular pattern (PAMP) is recognized by PRRs, innate immune response against infection is triggered via an orchestration of molecular interaction, cytokines cascades, and immune cells. RIG-I plays a critical role in type I interferon (IFN-I) production by direct recognition of cytoplasmic double-stranded viral RNA. However, the activation mechanism of RIG-I is incompletely understood. In this study, we reported RNA-binding protein ZFP36 as a positive regulator of RIG-I-mediated IFN-I production. ZFP36 is a member of Zinc finger proteins (ZFPs) characterized by the zinc finger (ZnF) motif, which broadly involved gene transcription and signal transduction. However, its role in regulating antiviral innate immune signaling is still unclear. We found that ZFP36 associates with RIG-I and potentiates the FN-ß production induced by SeV. Mechanistically, ZFP36 promotes K63-linked polyubiquitination of RIG-I, mostly at K154/K164/K172, thereby facilitating the activation of RIG-I during infection. While the mutant ZFP36 (C118S/C162S) failed to increase polyubiquitination of RIG-I and SeV induced FN-ß. Our findings collectively demonstrated that ZFP36 acts as a positive regulator in antiviral innate immunity by targeting RIG-I for K63-linked ubiquitination, thus improving our understanding of the activation mechanism of RIG-I.

4.
Ecotoxicol Environ Saf ; 263: 115262, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480693

RESUMO

China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.


Assuntos
Metais Terras Raras , Ítrio , Humanos , Animais , Camundongos , Masculino , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Espécies Reativas de Oxigênio , Apoptose , Autofagia , DNA Mitocondrial , Genitália Masculina
5.
Microbiol Spectr ; 9(3): e0145821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908452

RESUMO

TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines in response to acute viral infection. However, excessive or prolonged production of IFN-I is harmful and even fatal to the host by causing autoimmune disorders. In this study, we identified mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) as a negative regulator in the RIG-I-like receptor (RLR) signaling pathway. MAP4K1, a member of Ste20-like serine/threonine kinases, was previously known as a prominent regulator in adaptive immunity by downregulating T-cell receptor (TCR) signaling and B-cell receptor (BCR) signaling. However, its role in regulating antiviral innate immune signaling is still unclear. This study reports an undiscovered role of MAP4K1, which inhibits RLR signaling by targeting TBK1/IKKε for proteasomal degradation via the ubiquitin ligase DTX4. We initially identify MAP4K1 as an interacting partner of TBK1 by yeast two-hybrid screens and subsequently investigate its function in RLR-mediated antiviral signaling pathways. Overexpression of MAP4K1 significantly inhibits RNA virus-triggered activation of IFN-ß and the production of proinflammatory cytokines. Consistently, knockdown or knockout experiments show opposite effects. Furthermore, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via DTX4. Knockdown of DTX4 abrogated the ubiquitination and degradation of TBK1/IKKε. Collectively, our results identify that MAP4K1 acts as a negative regulator in antiviral innate immunity by targeting TBK1/IKKε, discover a novel TBK1 inhibitor, and extend a novel functional role of MAP4K1 in immunity. IMPORTANCE TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines to restrict the spread of invading viruses. However, excessive or prolonged production of IFN-I is harmful to the host by causing autoimmune disorders. In this study, we identified that mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a negative regulator in the RLR signaling pathway. Notably, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via the ubiquitin ligase DTX4, leading to the negative regulation of the IFN signaling pathway. Previous studies showed that MAP4K1 has a pivotal function in adaptive immune responses. This study identifies that MAP4K1 also plays a vital role in innate immunity and outlines a novel mechanism by which the IFN signaling pathway is tightly controlled to avoid excessive inflammation. Our study documents a novel TBK1 inhibitor, which serves as a potential therapeutic target for autoimmune diseases, and elucidated a significant function for MAP4K1 linked to innate immunity in addition to subsequent adaptive immunity.


Assuntos
Citocinas/biossíntese , Quinase I-kappa B/metabolismo , Interferon beta/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Viroses/imunologia , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/imunologia , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Ubiquitinação
6.
J Int Med Res ; 45(5): 1481-1485, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28984171

RESUMO

We herein report a newly described cause of venous pulsatile tinnitus: protrusion of an aberrant sylvian vein into the tympanum. A 60-year-old woman presented with a 4-month history of objective persistent pulsatile tinnitus in the right ear with no other complaints. The pulsatile tinnitus diminished with rotation of the head to the right side or by compression of the right cervical vascular structures. The frequency and intensity of the tinnitus were 125 Hz and 20 dB HL, respectively. Audiometry and otoscopic examination findings were normal. Radiologic examination showed that the right sylvian vein protruded into the tympanum through the dehiscent anterior cortical plate of the tympanum.


Assuntos
Veias Cerebrais/anormalidades , Zumbido/etiologia , Veias Cerebrais/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...