Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8081-8089, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38464695

RESUMO

It has been reported that the length of branched alkyl side chains on fused-ring electron acceptors confers different impacts on properties versus solubility of BJH blends. However, because this impact on a non-fused acceptor backbone has rarely been studied, we examined the impact of molecular optimization from alkyl chain tuning based on non-fused thiazolothiazole small-molecule acceptors. The length of the side chain on the thiophene bridge was modified from 2-butyloctyl to 2-ethylhexyl, which corresponds to small molecules TTz3(C4C6) and TTz3(C2C4), respectively. Compared with the reported TTz3(C6C8) with long alkyl side chains, TTz3(C4C6) and TTz3(C2C4) exhibited stronger molecular aggregation, higher absorption coefficients, and greater redshifted UV absorption. Unexpectedly, after the alkyl chain was slightly shortened in this type of acceptor system, devices were successfully fabricated, but it was necessary to reduce the blending concentration at low rotation speeds due to the sharp decrease in the solubility of corresponding acceptor materials. Thus, the obtained unfavorable thickness and morphology of the active layer caused a decrease in Jsc and FF. As a consequence, TTz3(C4C6)- and TTz3(C2C4)-based devices showed an unsatisfactory power conversion efficiency of 6.02% and 2.71%, respectively, when donors were paired with the wide bandgap donor J71, which is inferior to that of TTz3(C6C8)-based devices (8.76%). These results indicate that it is challenging to determine the limit of the adjustable range of side chains to modify non-fused thiazolothiazole small-molecule acceptors for high-performance non-fullerene solar cells.

3.
Small ; 19(52): e2304368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649173

RESUMO

Ternary polymer solar cells(PSCs) have been identified as an effective approach to improving power conversion efficiency (PCE) of binary PSCs. However, most of the third component, especially Y-series non-fullerene acceptors, is a fused ring acceptor which often requires a rather tedious synthesis and the use of hazardous organostannane reagents. In this work, two nonfused ring acceptors IOEH-4F and IOEH-N2F are synthesized by a green synthetic route and incorporated into PM6:Y6 blend. Encouragingly, the IOEH-4F and IOEH-N2F-based ternary PSCs exhibited more efficient charge transfer, exciton separation, and lower energy loss than PM6:Y6-based PSCs. And the IOEH-4F and IOEH-N2F-based ternary PSCs achieved an impressive PCE of 17.80% and 18.13%, respectively, which are higher than that of PM6:Y6 based PSCs (16.18%). Notably, these PCE values are also the highest PCEs for ternary PSCs including non-fused ring acceptors. Importantly, even when the IOEH-N2F:Y6 ratios increased from 0.05:1.2 to 0.50:1.2, the PCE of IOEH-N2F-based ternary PSCs (16.70%) are still higher than that of PM6:Y6 based PSCs, indicating the great potential for cost saving. It is believed that the findings will help the design of better nonfused ring acceptors and the optimization of corresponding ternary PSCs with cost-saving advantage.

4.
Foods ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048277

RESUMO

Huangjiu is one of the oldest alcoholic beverages in the world. It is usually made by fermenting grains, and Qu is used as a saccharifying and fermenting agent. In this study, we identified differential carbonyl compounds in Huangjiu with varying sugar contents from different regions. First, we developed and validated a detection method for volatile carbonyl compounds in Huangjiu, and for optimal extraction, 5 mL of Huangjiu and 1.3 g/L of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) were incubated at 45 °C for 5 min before extracting the volatile carbonyl compounds at 45 °C for 35 min. Second, the targeted quantitative analysis of 50 carbonyl compounds in Huangjiu showed high levels of Strecker aldehydes and furans. Finally, orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to differentiate between Huangjiu with different sugar contents, raw materials, and region of origin. A total of 19 differential carbonyl compounds (VIP > 1, p < 0.05) were found in Huangjiu with different sugar contents (semidry and semisweet Huangjiu), and 20 differential carbonyl compounds (VIP > 1, p < 0.05) were found in different raw materials for Huangjiu production (rice and nonrice Huangjiu). A total of twenty-two and eight differential carbonyl compounds, with VIP > 1 and p < 0.05, were identified in semidry and semisweet Huangjiu from different regions (Zhejiang, Jiangsu, Shanghai, and Fujian), respectively.

5.
Small ; 18(29): e2202229, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35736629

RESUMO

Atomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS2(1-x) Se2x alloys, and 2) varying the twist angles of the stacked heterobilayer structures. Photoluminescence (PL) results combined with density functional theory (DFT) calculation show that by changing the alloy composition, a continuously tunable band alignment and a transition of type II-type I-type II band alignment of TMD heterobilayer is achieved. Moreover, only at moderate (10°-50°) twist angles, a PL enhancement of 28%-110% caused by the type I alignment is observed, indicating that the twist angle is coupled with the global band structure of heterobilayer. A heterojunction device made with MoS0.76 Se1.24 /WS2 of 14° displays a significantly high photoresponsivity (55.9 A W-1 ), large detectivity (1.07 × 1010 Jones), and high external quantum efficiency (135%). These findings provide engineering tools for heterostructure design for their application in optoelectronic devices.

6.
J Phys Chem Lett ; 12(17): 4292-4298, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928781

RESUMO

The water-gas shift reaction is one of the most important reactions in industrial hydrogen production and plays a key role in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle but is little known at extreme pressure-temperature conditions found in the Earth's upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid from CO and supercritical water at 10-13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000-1400 K. Our study suggests that the water-gas shift reaction may not happen in the Earth's upper mantle, and formic acid or formate may be an important carbon carrier in reducing environments, participating in many geochemical processes in deep Earth.

7.
J Phys Chem Lett ; 11(24): 10433-10438, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33269931

RESUMO

Aqueous organic redox flow batteries have many appealing properties in the application of large-scale energy storage. The large chemical tunability of organic electrolytes shows great potential to improve the performance of flow batteries. Computational studies at the quantum-mechanics level are very useful for guiding experiments, but in previous studies, explicit water interactions and thermodynamic effects were ignored. Here, we applied the computational electrochemistry method based on ab initio molecular dynamics and thermodynamic integration to calculate redox potentials of quinones and their derivatives. The calculated results are in excellent agreement with experimental data. We mixed side chains to tune their reduction potentials and found that solvation interactions and entropy effects play a significant role in side-chain engineering. On the basis of our calculations, we proposed several high-performance negative and positive electrolytes. Our first-principles study paves the way toward the development of large-scale and sustainable electrical energy storage.

8.
Dalton Trans ; 49(25): 8785-8790, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32555837

RESUMO

A novel bipolar NIR iridium(iii) complex (CH3OTPA-BTz-Iq)2Ir(pic-OXD) with both a hole transporting (HT) triphenylamine (TPA) group and an electron transporting (ET) oxadiazole (OXD) group was designed and synthesized. It was observed that the incorporation of OXD and TPA into the ligand (CH3OTPA-BTz-Iq)2Ir(pic-OXD) improved the optophysical and electroluminescence performance in comparison with the parent iridium(iii) complex (CH3OTPA-BTz-Iq)2Irpic. In (CH3OTPA-BTz-Iq)2Ir(pic-OXD)-based OLEDs, a maximum external quantum efficiency (EQEmax) of 1.15% at 716 nm was obtained, which is much superior than that of the (CH3OTPA-BTz-Iq)2Irpic-based OLEDs (0.41% at 723 nm).

9.
Dalton Trans ; 47(38): 13368-13377, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207369

RESUMO

Polarised phosphorescence has a bright future in backlighting for conventional liquid crystal displays due to its theoretical 100% internal quantum efficiency and low cost. However, there are scarce reports on polarised phosphorescence from metallomesogens. In this contribution, a platinum-based metallomesogen containing a mesogenic biphenyl (Pt1) was prepared and characterised. To further explore the effect of the substituent on mesophase and emission properties, a related complex Pt2 containing a tetraphenylethene (TPE) moiety was also synthesised. Both complexes melt at elevated temperatures but thereafter do not appear to crystallise on cooling. Complex Pt1 shows an enantiotropic nematic phase from which a broad emission can be seen when spread as a film; in solution, an intense, sky-blue emission is observed. For Pt2, which shows a monotropic SmA phase, the emission in the condensed phase is suppressed and there is only weak emission in solution. Polarisation-dependent photoluminescence with a polarised ratio of 5.4 was obtained for the aligned film of a Pt1:polyimide mixture. Using Pt1 as an emissive layer, non-doped, polarised organic light-emitting diodes presented a broad emission spectrum in the range of 450-900 nm with a polarised ratio of 1.33 and the highest external quantum efficiency of 1.1%. This research has an important significance for achieving broad-based polarised phosphorescence from platinum complex-based metallomesogens.

10.
J Phys Condens Matter ; 30(25): 25LT02, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29762131

RESUMO

Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D zinc porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and molecular energy levels between those 2D ZnPors and our previous proposed zinc phthalocyanines (ZnPcs), 11 type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cells. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which exceeds all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells.

11.
Dalton Trans ; 42(4): 1231-7, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23138411

RESUMO

A novel dinuclear platinum complex of (dfppy-mhb-dfppy)Pt(2)(acac)(2) was synthesized and characterized, where dfppy-mhb-dfppy is a binary C^N cyclometalated ligand containing two bridged 2,4-difluorophenylpyridine (dfppy) units and acac is 2,4-pentanedione anion. Compared to previously reported dinuclear platinum complexes with a binary ancillary ligand, this dinuclear platinum complex showed more intense excimer emission, peaking at 617 nm, besides its intrinsic emission in dilute dichloromethane solution. Single-emissive-layer (SEL) polymer light-emitting devices (PLEDs) using (dfppy-mhb-dfppy)Pt(2)(acac)(2) as dopant and a blend of poly (N-vinylcarbazole) (PVK) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as host matrix exhibited stable white emission at 1 wt% doping concentration under applied voltages from 7 V to 11 V. The stable white emission observed in the (dfppy-mhb-dfppy)Pt(2)(acac)(2)-doped SEL PLEDs indeed implies that the dinuclear platinum complex constructed by a binary cyclometalated ligand has a potential application in white-emitting SEL PLEDs.

12.
Dalton Trans ; 41(3): 1074-81, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22116615

RESUMO

To improve opto-electronic properties and efficiently suppress excimer emission, a phenylpyridine (ppy)-based platinum(II) complex (C(16)OCz-ppy)Pt(acac) was synthesized and characterized, where C(16)OCz-ppy is a 2-phenylpyridine derivative appending a carbazole moiety and three hexadecyloxy methyl units in the parent phenylpyridine, and acac is acetylacetone. This carbazole-modified platinum(II) complex exhibited good thermal stability and three times higher photoluminescent quantum yield than its parent (2-phenylpyridine-C(2),N)(2,4-pentanedionato-O,O)platinum(II) complex [(ppy)Pt(acac)]. Single-emissive-layer polymer light-emitting devices using (C(16)OC(Z)-ppy)Pt(acac) as dopant and a blend of poly(N-vinylcarbazole) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as host matrix presented a maximum current efficiency of 1.51 cd A(-1), which was 1.5 times higher than that from the (ppy)Pt(acac)-doped device with the same device structure. Little excimer emission and minor aggregation emission were observed in the (C(16)OC(Z)-ppy)Pt(acac)-doped PLEDs at different dopant concentrations and applied voltages. This work indicates that introducing a carbazole and three hexadecyloxy methyl groups into the planar platinum(II) complex can reduce molecular aggregation and excimer emissions, thus resulting in high luminance and stable EL spectra in comparison with the parent (ppy)Pt(acac).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...