Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32737471

RESUMO

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Flavanonas , Flavonoides , Pandemias , Pneumonia Viral , Replicação Viral/efeitos dos fármacos , Administração Oral , Animais , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ensaios Enzimáticos , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral/fisiologia
2.
Acta Pharmacol Sin ; 40(6): 850-858, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30796354

RESUMO

Serine/threonine phosphatase (Stp1) is a member of the bacterial Mg2+- or Mn2+- dependent protein phosphatase/protein phosphatase 2C family, which is involved in the regulation of Staphylococcus aureus virulence. Aurintricarboxylic acid (ATA) is a known Stp1 inhibitor with an IC50 of 1.03 µM, but its inhibitory mechanism has not been elucidated in detail because the Stp1-ATA cocrystal structure has not been determined thus far. In this study, we performed 400 ns molecular dynamics (MD) simulations of the apo-Stp1 and Stp1-ATA complex models. During MD simulations, the flap subdomain of the Stp1-ATA complex experienced a clear conformational transition from an open state to a closed state, whereas the flap domain of apo-Stp1 changed from an open state to a semi-open state. In the Stp1-ATA complex model, the hydrogen bond (H-bond) between D137 and N142 disappeared, whereas critical H-bond interactions were formed between Q160 and H13, Q160/R161 and ATA, as well as N162 and D198. Finally, four residues (D137, N142, Q160, and R161) in Stp1 were mutated to alanine and the mutant enzymes were assessed using phosphate enzyme activity assays, which confirmed their important roles in maintaining Stp1 activity. This study indicated the inhibitory mechanism of ATA targeting Stp1 using MD simulations and sheds light on the future design of allosteric Stp1 inhibitors.


Assuntos
Ácido Aurintricarboxílico/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Ácido Aurintricarboxílico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
3.
Acta Pharmacol Sin ; 38(12): 1673-1682, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28748916

RESUMO

Phosphoglycerate mutase 1 (PGAM1), an important enzyme in glycolysis, is overexpressed in a number of human cancers, thus has been proposed as a promising metabolic target for cancer treatments. The C-terminal portion of the available crystal structures of PGAM1 and its homologous proteins is partially disordered, as evidenced by weak electron density. In this study, we identified the conformational behavior of the C-terminal region of PGAM1 as well as its role during the catalytic cycle. Using the PONDR-FIT server, we demonstrated that the C-terminal region was intrinsically disordered. We applied the Monte Carlo (MC) method to explore the conformational space of the C-terminus and conducted a series of explicit-solvent molecular dynamics (MD) simulations, and revealed that the C-terminal region is inherently dynamic; large-scale conformational changes in the C-terminal segment led to the structural transition of PGAM1 from the closed state to the open state. Furthermore, the C-terminal segment influenced 2,3-bisphosphoglycerate (2,3-BPG) binding. The proposed swing model illustrated a critical role of the C-terminus in the catalytic cycle through the conformational changes. In conclusion, the C-terminal region induces large movements of PGAM1 from the closed state to the open state and influences cofactor binding during the catalytic cycle. This report describes the dynamic features of the C-terminal region in detail and should aid in design of novel and efficient inhibitors of PGAM1. A swing mechanism of the C-terminal region is proposed, to facilitate further studies of the catalytic mechanism and the physiological functions of its homologues.


Assuntos
Simulação de Dinâmica Molecular , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/metabolismo , Biocatálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Método de Monte Carlo , Fosfoglicerato Mutase/antagonistas & inibidores , Análise de Componente Principal , Conformação Proteica , Eletricidade Estática
4.
J Phys Chem B ; 116(28): 8121-30, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22702398

RESUMO

(-)-Stepholidine (l-SPD), an active ingredient of the Chinese herb Stephania, is the first compound found to have a dual function as a dopamine receptor D1 agonist and D2 antagonist. The preliminary dynamical behaviors of D1R and D2R and their interaction modes with l-SPD were investigated in our previous study. Recently, the pharmacological effect of l-SPD on D3R was elucidated as an antagonist. This new discovery in combination with the explosion of structural biology in GPCR superfamily prompted us to perform a more comprehensive investigation on the special pharmacological profiles of l-SPD on dopamine receptors. In this study, the integration of homology modeling, automated molecular docking, and MD simulations was used to probe the agonistic and antagonistic mechanism of l-SPD on D1R, D2R, and D3R. Our analyses showed that hydrogen bonding of the hydroxyl group on the D ring of l-SPD with side chain of N6.55 which, in combination with hydrophobic stacking between I3.40, F6.44 and W6.48, is the key feature to mediate the agonist effect of l-SPD on D1R, whereas the absence of hydrophobic stacking between I3.40, F6.44, and W6.48 in D2R and D3R excludes receptor activation. Finally, the agonistic and antagonistic mechanisms of l-SPD and an activation model of D1R were proposed on the basis of these findings. The present study could guide future experimental works on these receptors and has the significance to the design of functionally selective drugs targeting dopamine receptors.


Assuntos
Berberina/análogos & derivados , Antagonistas dos Receptores de Dopamina D2 , Simulação de Dinâmica Molecular , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Sequência de Aminoácidos , Berberina/farmacologia , Produtos Biológicos/química , Modelos Moleculares , Dados de Sequência Molecular
5.
Acta Pharmacol Sin ; 30(12): 1694-708, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935678

RESUMO

AIM: This study was conducted to compare the efficiencies of two virtual screening approaches, pharmacophore-based virtual screening (PBVS) and docking-based virtual screening (DBVS) methods. METHODS: All virtual screens were performed on two data sets of small molecules with both actives and decoys against eight structurally diverse protein targets, namely angiotensin converting enzyme (ACE), acetylcholinesterase (AChE), androgen receptor (AR), D-alanyl-D-alanine carboxypeptidase (DacA), dihydrofolate reductase (DHFR), estrogen receptors alpha (ERalpha), HIV-1 protease (HIV-pr), and thymidine kinase (TK). Each pharmacophore model was constructed based on several X-ray structures of protein-ligand complexes. Virtual screens were performed using four screening standards, the program Catalyst for PBVS and three docking programs (DOCK, GOLD and Glide) for DBVS. RESULTS: Of the sixteen sets of virtual screens (one target versus two testing databases), the enrichment factors of fourteen cases using the PBVS method were higher than those using DBVS methods. The average hit rates over the eight targets at 2% and 5% of the highest ranks of the entire databases for PBVS are much higher than those for DBVS. CONCLUSION: The PBVS method outperformed DBVS methods in retrieving actives from the databases in our tested targets, and is a powerful method in drug discovery.


Assuntos
Desenho de Fármacos , Software , Animais , Cristalografia por Raios X , Bases de Dados Factuais , HIV-1 , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas
6.
Acta Pharmacol Sin ; 26(10): 1201-11, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16174436

RESUMO

AIM: To investigate methods for identifying specific cyclophilin D (CypD) inhibitors derived from quinoxaline, thus developing possible lead compounds to inhibit mitochondrial permeability transition (MPT) pore opening. METHODS: Kinetic analysis of the CypD/inhibitor interaction was quantitatively performed by using surface plasmon resonance (SPR) and fluorescence titration (FT) techniques. IC(50) values of these inhibitors were determined by PPIase inhibition activity assays. RESULTS: All the equilibrium dissociation constants (KD) of the seven compounds binding to CypD were below 10 mumol/L. The IC(50) values were all consistent with the SPR and FT results. Compounds GW2, 5, 6, and 7 had high inhibition activities against Ca(2+)-dependent rat liver mitochondrial swelling and Ca(2+) uptake/release. Compound GW5 had binding selectivity for CypD over CypA. CONCLUSION: The agreement between the measured IC(50) values and the results of SPR and FT suggests that these methods are appropriate and powerful methods for identifying CypD inhibitors. The compounds we screened using these methods (GW1-7) are reasonable CypD inhibitors. Its potent ability to inhibit mitochondrial swelling and the binding selectivity of GW5 indicates that GW5 could potentially be used for inhibiting MPT pore opening.


Assuntos
Cálcio/metabolismo , Ciclofilinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Dilatação Mitocondrial/efeitos dos fármacos , Quinoxalinas/farmacologia , Animais , Sítios de Ligação , Ciclofilina A/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/química , Ciclofilinas/metabolismo , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Peptidilprolil Isomerase/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...