Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 33(8): 1076-1083, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311705

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.


Assuntos
Bacillus , Solo , Ácido 3-Hidroxibutírico , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Bacillus/genética , Bacillus/metabolismo , Hidrolases de Éster Carboxílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...