Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 19(1): 411-418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303820

RESUMO

Background/purpose: Proper implant-ridge classification is crucial for developing a dental implant treatment plan. This study aimed to verify the ability of MobileNet, an advanced deep learning model characterized by a lightweight architecture that allows for efficient model deployment on resource-constrained devices, to identify the implant-ridge relationship. Materials and methods: A total of 630 cone-beam computerized tomography (CBCT) slices from 412 patients were collected and manually classified according to Terheyden's definition, preprocessed, and fed to MobileNet for training under the conditions of limited datasets (219 slices, condition A) and full datasets (630 cases) without and with automatic gap filling (conditions B and C). Results: The overall model accuracy was 84.00% in condition A and 95.28% in conditions B and C. In condition C, the accuracy rates ranged from 94.00 to 99.21%, with F1 scores of 89.36-100.00%, and errors due to unidentifiable bone-implant contact and miscellaneous reasons were eliminated. Conclusion: The MobileNet architecture was able to identify the implant-ridge classification on CBCT slices and can assist clinicians in establishing a reliable preoperative diagnosis and treatment plan for dental implants. These results also suggest that artificial intelligence-assisted implant-ridge classification can be performed in the setting of general dental practice.

2.
Clin Implant Dent Relat Res ; 26(2): 376-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151900

RESUMO

OBJECTIVES: This study aimed to use a deep learning (DL) approach for the automatic identification of the ridge deficiency around dental implants based on an image slice from cone-beam computerized tomography (CBCT). MATERIALS AND METHODS: Single slices crossing the central long-axis of 630 mandibular and 845 maxillary virtually placed implants (4-5 mm diameter, 10 mm length) in 412 patients were used. The ridges were classified based on the intraoral bone-implant support and sinus floor location. The slices were either preprocessed by alveolar ridge homogenizing prior to DL (preprocessed) or left unpreprocessed. A convolutional neural network with ResNet-50 architecture was employed for DL. RESULTS: The model achieved an accuracy of >98.5% on the unpreprocessed image slices and was found to be superior to the accuracy observed on the preprocessed slices. On the mandible, model accuracy was 98.91 ± 1.45%, and F1 score, a measure of a model's accuracy in binary classification tasks, was lowest (97.30%) on the ridge with a combined horizontal-vertical defect. On the maxilla, model accuracy was 98.82 ± 1.11%, and the ridge presenting an implant collar-sinus floor distance of 5-10 mm with a dehiscence defect had the lowest F1 score (95.86%). To achieve >90% model accuracy, ≥441 mandibular slices or ≥592 maxillary slices were required. CONCLUSIONS: The ridge deficiency around dental implants can be identified using DL from CBCT image slices without the need for preprocessed homogenization. The model will be further strengthened by implementing more clinical expertise in dental implant treatment planning and incorporating multiple slices to classify 3-dimensional implant-ridge relationships.


Assuntos
Aumento do Rebordo Alveolar , Aprendizado Profundo , Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Humanos , Implantação Dentária Endóssea/métodos , Aumento do Rebordo Alveolar/métodos , Transplante Ósseo/métodos , Maxila/cirurgia
3.
Arterioscler Thromb Vasc Biol ; 43(5): 755-773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951060

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease, in which macrophages determine the progression of atherosclerotic plaques. However, no studies have investigated how METTL3 (methyltransferase like 3) in macrophages affects atherosclerotic plaque formation in vivo. Additionally, whether Braf mRNA is modified by METTL3-dependent N6-methyladenosine (m6A) methylation remains unknown. METHODS: We analyzed single-cell sequencing data of atherosclerotic plaques in mice fed with a high fat diet for different periods. Mettl3fl/fl Lyz2cre Apoe-/- mice and littermate control Mettl3fl/fl Apoe-/- mice were generated and fed high fat diet for 14 weeks. In vitro, we stimulated peritoneal macrophages with ox-LDL (oxidized low-density lipoprotein) and tested the mRNA and protein expression levels of inflammatory factors and molecules regulating ERK (extracellular signal-regulated kinase) phosphorylation. To find METTL3 targets in macrophages, we performed m6A-methylated RNA immunoprecipitation sequencing and m6A-methylated RNA immunoprecipitation-qPCR. Further, point mutation experiments were used to explore m6A-methylated adenine. Using RNA immunoprecipitation assay, we explored m6A methylation-writing protein bound to Braf mRNA. RESULTS: In vivo, METTL3 expression in macrophages increased with the progression of atherosclerosis. Myeloid cell-specific METTL3 deletion negatively regulated atherosclerosis progression and the inflammatory response. In vitro, METTL3 knockdown or knockout in macrophages attenuated ox-LDL-mediated ERK phosphorylation rather than JNK (c-Jun N-terminal kinase) and p38 phosphorylation and reduced the level of inflammatory factors by affecting BRAF protein expression. The negative regulation of inflammation response caused by METTL3 knockout was rescued by overexpression of BRAF. In mechanism, METTL3 targeted adenine (39725126 in chromosome 6) on the Braf mRNA. Then, YTHDF1 could bind to m6A-methylated Braf mRNA and promoted its translation. CONCLUSIONS: Myeloid cell-specific Mettl3 deficiency suppressed hyperlipidemia-induced atherosclerotic plaque formation and attenuated atherosclerotic inflammation. We identified Braf mRNA as a novel target of METTL3 in the activation of the ox-LDL-induced ERK pathway and inflammatory response in macrophages. METTL3 may represent a potential target for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Macrófagos/metabolismo , Inflamação/genética , Inflamação/prevenção & controle , Inflamação/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo
4.
FASEB J ; 37(3): e22810, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786718

RESUMO

Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Fenótipo , Análise de Sequência de RNA/métodos
5.
Cell Death Differ ; 30(4): 966-978, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681779

RESUMO

Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.


Assuntos
Lisina , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Lisina/metabolismo , Células HEK293 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Ubiquitinação , NF-kappa B/metabolismo , Imunidade Inata , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Signal Transduct Target Ther ; 7(1): 125, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473929

RESUMO

The developmental origin, anatomical location, and other factors contribute to aortic heterogeneity in a physiological state. On this basis, vascular diseases occur at different ratios based on position specificity, even with the same risk factor. However, the continuous intersegmental aortic profile has been rarely reported at the single-cell level. To reveal aortic heterogeneity, we identified 15 cell subtypes from five continuous aortic segments by marker genes and functional definitions. The EC1 subtype highly expressed Vcam1 and Scarb2 genes in the aortic arch, which were reported to be associated with atherosclerosis. The newly identified Fbn1+ fibroblasts were found highly expressed in thoracic segments. More importantly, vascular smooth muscle cells (VSMCs) demonstrated a novel composition in which VSMC 4 marked with the gene Malat1 were mainly distributed in the abdominal segment. Malat1 knockout reduced MMPs and inflammatory factor production induced by Ang II in smooth muscle cells, and the Malat1 inhibitor exerted preventive, inhibitory, and reversing effects on AngII-induced abdominal aortic aneurysm (AAA) in vivo revealed by a series of animal experiments. Single-cell analysis of AngII-induced AAA tissues treated with or without the inhibitor further clarified the key role of Malat1+VSMC in the occurrence and progression of AAA. In summary, segmental gene expression and cell subtype features in normal aorta associated with different vascular diseases might provide potential therapeutic targets.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Angiotensina II/efeitos adversos , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Aorta/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Cell Death Differ ; 29(3): 556-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34584221

RESUMO

Renal fibrosis and inflammation are critical for the initiation and progression of hypertensive renal disease (HRD). However, the signaling mechanisms underlying their induction are poorly understood, and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase, in HRD remains unclear. This study aimed to elucidate the role of TRIM31 in the pathogenesis of HRD, discover targets of TRIM31, and explore the underlying mechanisms. Pathological specimens of human HRD kidney were collected and an angiotensin II (AngII)-induced HRD mouse model was developed. We found that TRIM31 was markedly reduced in both human and mouse HRD renal tissues. A TRIM31-/- mice was thus constructed and showed significantly aggravated hypertension-induced renal dysfunction, fibrosis, and inflammation, following chronic AngII infusion compared with TRIM31+/+ mice. In contrast, overexpression of TRIM31 by injecting adeno-associated virus (AAV) 9 into C57BL/6J mice markedly ameliorated renal dysfunction, fibrotic and inflammatory response in AngII-induced HRD relative to AAV-control mice. Mechanistically, TRIM31 interacted with and catalyzed the K48-linked polyubiquitination of lysine 72 on Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), followed by the proteasomal degradation of MAP3K7, which further negatively regulated TGF-ß1-mediated Smad and MAPK/NF-κB signaling pathways. In conclusion, this study has demonstrated for the first time that TRIM31 serves as an important regulator in AngII-induced HRD by promoting MAP3K7 K48-linked polyubiquitination and inhibiting the TGF-ß1 signaling pathway.


Assuntos
Hipertensão Renal , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Fibrose , Humanos , Inflamação/metabolismo , MAP Quinase Quinase Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1 , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
8.
J Cell Mol Med ; 25(20): 9660-9673, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514716

RESUMO

This study aimed to characterize the cells and gene expression landscape in atrial septal defect (ASD). We performed single-cell RNA sequencing of cells derived from cardiac tissue of an ASD patient. Unsupervised clustering analysis was performed to identify different cell populations, followed by the investigation of the cellular crosstalk by analysing ligand-receptor interactions across cell types. Finally, differences between ASD and normal samples for all cell types were further investigated. An expression matrix of 18,411 genes in 6487 cells was obtained and used in this analysis. Five cell types, including cardiomyocytes, endothelial cells, smooth muscle cells, fibroblasts and macrophages were identified. ASD showed a decreased proportion of cardiomyocytes and an increased proportion of fibroblasts. There was more cellular crosstalk among cardiomyocytes, fibroblasts and macrophages, especially between fibroblast and macrophage. For all cell types, the majority of the DEGs were downregulated in ASD samples. For cardiomyocytes, there were 199 DEGs (42 upregulated and 157 downregulated) between ASD and normal samples. PPI analysis showed that cardiomyocyte marker gene FABP4 interacted with FOS, while FOS showed interaction with NPPA. Cell trajectory analysis showed that FABP4, FOS, and NPPA showed different expression changes along the pseudotime trajectory. Our results showed that single-cell RNA sequencing provides a powerful tool to study DEG profiles in the cell subpopulations of interest at the single-cell level. These findings enhance the understanding of the underlying mechanisms of ASD at both the cellular and molecular level and highlight potential targets for the treatment of ASD.


Assuntos
Perfilação da Expressão Gênica , Comunicação Interatrial/genética , RNA-Seq , Análise de Célula Única , Transcriptoma , Cadáver , Comunicação Celular , Linhagem Celular , Biologia Computacional/métodos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Lactente , Masculino , Anotação de Sequência Molecular , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , RNA-Seq/métodos , Análise de Célula Única/métodos
9.
Epigenomics ; 12(5): 439-454, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043895

RESUMO

Aim: We aimed to identify the expression profile and role of circular RNAs (circRNAs) in coronary heart disease (CHD). Materials & methods: We performed sequence analysis of circRNAs in peripheral blood mononuclear cells of 70 CHD patients and 30 controls. Eight selected circRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR) in human atherosclerotic coronary arteries. Results: In total, 2283 downregulated and 85 upregulated circRNAs were identified in CHD. Parental genes of top 100 dysregulated-circRNAs are related to metabolism and protein modification, and 12 circRNAs might upregulate their CHD-related parental genes through miRNA sponges. Of the eight circRNAs validated in atherosclerotic coronary arteries by qRT-PCR, six were consistent with sequencing results of peripheral blood mononuclear cells. Conclusion: As potential ceRNAs, dysregulated circRNAs may be involved in CHD pathophysiology.


Assuntos
Biologia Computacional , Doença das Coronárias/genética , Perfilação da Expressão Gênica , RNA Circular , Transcriptoma , Biomarcadores , Estudos de Casos e Controles , Biologia Computacional/métodos , Doença das Coronárias/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos
10.
Exp Ther Med ; 19(1): 137-146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853283

RESUMO

The present study aimed to clarify the effect of bolus intracoronary nicorandil on inflammatory, oxidative and adherent indicators in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). This randomized controlled trial (RCT) was performed to detect the inflammation and oxidative stress in intracoronary blood both before and after PCI. In total, 65 consecutive patients undergoing PCI were classified into a nicorandil therapy group (n=32) or a placebo group (n=33). All procedures were performed at Shandong University Qilu Hospital, China, during the period from March, 2016 to May, 2017. Intracoronary blood from patients who received nicorandil therapy during PCI showed no change in soluble CD40 ligand (sCD40L) concentration (1.86±0.08 vs. 1.90±0.09 ng/ml, P=0.12) but a significant increase was noted in the control group (1.87±0.17 vs. 2.82±0.26 ng/ml, P<0.01). This indicated a relative reduction in sCD40L level after PCI in the nicorandil group. We further demonstrated an increase in superoxide dismutase (SOD) activity (29.37±0.81 vs. 31.03±0.60 U/ml, P<0.001) and a reduction in lipid peroxidation (3.84±0.99 vs. 4.23±0.13 U/ml, P=0.001) in the nicorandil group but observed no change in the placebo group. ICAM-1 levels showed no change in the nicorandil group (69.54±6.89 vs. 72.01±8.25 ng/ml, P=0.83) but a significant increase in the control group after PCI in intracoronary blood (56.57±4.96 vs. 76.81±6.88 ng/ml, P=0.002). No changes were found in hs-CRP, TNFα and sVCAM-1 levels in coronary blood for both groups before and after PCI in ACS patients. Our findings demonstrate that intracoronary bolus nicorandil therapy has a significant effect on the inhibition of inflammatory indicators and oxidative stress in patients with ACS during PCI. This suggests a possible medical application of nicorandil for reducing inflammation and oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...