Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 16809-16822, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858878

RESUMO

The X-ray sources for Compton radiography of ICF experiments are generated by using intense picosecond lasers to irradiate wire targets. The wire diameter must be designed thin enough, for example ∼ 10 µm in many published works, to comply a high spatial resolution. This results in a low laser-target interception, which limits the photon yield. We investigated a technique of coded-source radiography based on laser-driven annular sources via Monte Carlo and PIC simulations. The annular X-ray source is formed by laser irradiating tube target in which the effect of electron recirculation plays an important role. We proved that this technique has an increased spatial resolution and contrast than that using the Gaussian source produced by wire targets. Therefore, the diameter of the backlighter target can be significantly increased to uplift laser-target interception without compromising on spatial resolution. This contributes towards a reconciliation between the spatial resolution and photon yield for Compton radiography. The results predict the possibility of improving source photon yield by several times in future experiments.

2.
Opt Express ; 32(6): 9602-9609, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571190

RESUMO

The thin flyer is a small-scale flying object, which is well known as the core functional element of the initiator. Understanding how flyers perform has been a long-standing issue in detonator science. However, it remains a significant challenge to explore how the flyer is formed and functions in the barrel of the initiator via tabletop devices. In this study, we present dynamic and unprecedented images of flyer in barrel via high intensity short-pulse laser. Advanced radiography, coupled with a high-intensity picosecond laser X-ray source, has enabled the provision of state-of-the-art radiographs in a single-shot experiment for observing micron-scale flyer formation in a hollow cylinder in nanoseconds. The flyer was clearly visible in the barrel and was accelerated and restricted differently from that without the barrel. This first implementation of a tabletop X-ray source provided a new approach for capturing dynamic photographs of small-scale flying objects, which were previously reported to be accessible only via an X-ray phase-contrast imaging system at the advanced photon source. These efforts have led to a significant improvement of radiographic capability and a greater understanding of the mechanisms of "burst" of exploding foil initiators for this application.

3.
Phys Rev E ; 105(6-2): 065207, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854521

RESUMO

The spectral characteristics of high-order harmonics generated by the interaction of a linearly polarized relativistic laser pulse with a plasma grating target are investigated. Through particle-in-cell simulations and an analytical model, it is shown that a plasma grating target with periodic structure can select special harmonics with integer multiples of the grating frequency, and that low-order harmonics with frequencies being integer times of the laser frequency are generated nearly parallel to the target surface from a Fresnel zone plate target with an aperiodic structure. Spectral control of the harmonics can be achieved by introducing a correction factor ß to the radius formula of the Fresnel zone plate, which can create a slightly detuned plasma grating, and then only the narrow-band harmonics can be selected nearly parallel to the target surface. The center order of the narrow-band harmonics can be tuned by adjusting the correction factor ß, while the bandwidth of the harmonics can be selected by adjusting the other parameter λ_{f} of the detuned plasma grating.

4.
Opt Express ; 30(6): 8448-8460, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299297

RESUMO

Continuous fiber laser with ultra-high power and narrow linewidth is one of the key devices in the field of high-precision industrial processing, beam combining, and nonlinear frequency conversion. Under the premise of ensuring the signal quality, continuously increasing the output power is the focus of high-power narrow-linewidth fiber lasers. Driven by the white noise or pseudo-random binary sequence (PRBS), using cascaded phase modulations to broaden the spectrum of the seed source to suppress the stimulated Brillouin scattering (SBS) effect in the master oscillator power amplifier (MOPA) structure is an effective solution to increase the output power. However, this type of optical spectrum needs to be optimized, and the randomness of the driving signal causes a self-pulsing effect, which limits the further increase of the output power. In this paper, the influence of the frequency interval and randomness of the driving signal on the SBS effect in the laser system is analyzed. The modulated spectral type can be simply adjusted through changing the bit rate and inversion probability. Combining with high-order phase modulation, an approximate rectangular spectral broadening of the seed source with a tunable bandwidth up to 30 GHz is achieved. Compared with the cascaded white noise case, the output power of this scheme is increased by 600 W under the extended bandwidth of 27 GHz. It is fully verified that the seed source spectrum with high in-band flatness and low randomness can effectively suppress the SBS effect in the fiber laser and increase the output power.

5.
Opt Express ; 29(2): 719-728, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726302

RESUMO

We use the chaotic signal generated by a field-programmable gate array (FPGA) to establish a digital chaotic pulse lidar system, which can achieve mid-range detection and high ranging accuracy without a complex optical structure. We employ the FPGA to generate random sequences with different modulation rates based on different chaotic iterative equations and initial values. By selecting the initial value and improved logistic equations, we successfully achieve centimeter-level ranging accuracy. Experiments have proved that the digital chaotic lidar system can effectively resist the interference of chaotic signals, square wave signals, and sine wave signals with modulation frequencies of 10 MHz, 100 MHz, 200 MHz, and 1 GHz, showing its strong anti-interference capability.

6.
Rev Sci Instrum ; 90(3): 033504, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927823

RESUMO

The injecting time of the picosecond laser in an indirect-drive integrated fast ignition experiment was measured by using an x-ray streak camera. Despite overlapping spatially and temporally in experiments, the soft x-ray signal from the nanosecond laser ablating the inner wall of an Au hohlraum and the hard x-ray signal from the bremsstrahlung radiation of hot electrons generated by a picosecond laser were separated by different image processes by filtering and collimating the two signals differently. The time sequence between the two x-ray signals was analyzed to extract the injection time of the picosecond laser relative to the hohlraum emission. By tracking the neutron yield as a function of the injection time of the picosecond laser, a clear positive correlation between the neutron yield enhancement and the derived injection times was exhibited. The heating effect of the picosecond laser was confirmed. It is concluded that this method could be used to measure the injecting time and validate the picosecond laser injection.

7.
Rev Sci Instrum ; 89(11): 115106, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501278

RESUMO

The dynamic fragmentation of shock-loaded high-Z metal is of considerable importance for both basic and applied science. The areal density and mass-velocity distribution of dynamic fragmentation are crucial factors in understanding this issue. Experimental methods, such as pulsed X-ray radiography and proton radiography, have been utilized to obtain information on such factors; however, they are restricted to a complex device, and the spatial resolution is in the order of 100 µm. In this work, we present the high-quality radiography of the dynamic fragmentation of laser shock-loaded tin, with good two-dimensional (2D) spatial resolution. Dynamic fragmentation is generated via high-intensity ns-laser shock-loaded tin. A high-energy X-ray source in the 50-200 keV range is realized by the interaction of a high-intensity ps-pulse with an Au microwire target, attached to a low-Z substrate material. A high 2D resolution of 12 µm is achieved by point-projection radiography. The dynamic-fragmentation radiography is clear, and the signal-to-noise ratio is sufficiently high for a single-shot experiment. This unique technique has potential application in high-energy density experiments.

8.
Appl Radiat Isot ; 123: 41-48, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28231517

RESUMO

Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×1018-4×1019W/cm2, the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...