Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642687

RESUMO

When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.


Assuntos
Bioimpressão , Impressão Tridimensional , Pele , Engenharia Tecidual , Humanos , Bioimpressão/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Hidrogéis/química , Animais , Biopolímeros/química , Cicatrização/efeitos dos fármacos , Quitosana/química
2.
Nanoscale ; 16(9): 4434-4483, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38305732

RESUMO

After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.


Assuntos
Estruturas Metalorgânicas , Humanos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
3.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338352

RESUMO

Neurodegenerative diseases (NDDs) are mainly induced by oxidative stress which produces excessive reactive oxygen species (ROS). Quercetin (QU) is a potent antioxidant with some effects on NDDs. This study prepared and characterized a novel glucose-modified QU liposome (QU-Glu-Lip), aiming not only to overcome QU's poor water solubility and bioavailability but also to deliver more QU to brain tissue to enhance its neuroprotective effect. QU-Glu-Lip possessed encapsulation efficiency (EE) of 89.9%, homogenous particle sizes (116-124 nm), small PDI value (<0.3), zeta value -1.363 ± 0.437 mV, proper pH and salt stability, and proper cytotoxicity. The glucose-modified liposome penetrated the blood-brain barrier (BBB) mediated via the glucose transporter 1 (GLUT1) and was taken by neuronal cells more efficiently than liposome without glucose, according to bEnd.3 and PC12 cell tests. QU-Glu-Lip attenuated H2O2-induced oxidative damage to PC12 with higher cell viability (88.42%) and lower intracellular ROS compared to that of QU. QU-Glu-Lip had higher brain target ability and delivered more QU to neuronal cells, effectively exerting the antioxidative neuroprotection effect. There is potential for the QU-Glu-Lip application for more effective treatment of NDDs.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/farmacologia , Quercetina/farmacologia , Lipossomos , Peróxido de Hidrogênio , Neuroproteção , Espécies Reativas de Oxigênio , Glucose , Encéfalo
4.
Acta Biomater ; 175: 27-54, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110135

RESUMO

The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.


Assuntos
Anti-Infecciosos , Estruturas Metalorgânicas , Osteomielite , Periodontite , Infecção dos Ferimentos , Humanos , Estruturas Metalorgânicas/farmacologia , Espécies Reativas de Oxigênio , Anti-Infecciosos/farmacologia
5.
J Mater Chem B ; 11(33): 7873-7912, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37551112

RESUMO

Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.


Assuntos
Espaço Intracelular , Nanoestruturas , Animais , Espaço Intracelular/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanopartículas/química , Endocitose , Lipossomos/química , Inativação Gênica
6.
J Mater Chem B ; 11(29): 6718-6745, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37350139

RESUMO

Those who have used traditional biomaterials as bone substitutes have always regarded the immune response as an obstacle leading to implant failure. However, cumulative evidence revealed that blindly minimizing host immune reactions cannot induce successful bone regeneration. With the emergence of the new concept of osteoimmunology, the intimate mutual effects between the skeletal system and the immune system have been gradually recognized, promoting the innovation of biomaterials with osteoimmunomodulatory properties. By tuning the surface properties, biomaterials can precisely manipulate the osteoimmune environment favoring bone regeneration. In this review, we first reviewed the mutual effects between the skeletal system and the immune system to show the importance of immunomodulation on bone regeneration. Subsequently, we summarize the recent developments in surface modification strategies in terms of the surface physicochemical properties and surface coatings and explain how these modification strategies work.


Assuntos
Regeneração Óssea , Osteogênese , Materiais Biocompatíveis/farmacologia , Macrófagos , Propriedades de Superfície
7.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110034

RESUMO

In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.

8.
PLoS One ; 17(2): e0264561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213663

RESUMO

This paper builds an evaluation index system, uses the entropy weight method (EWM) to decide the weights and, based on the coupling coordination degree model (CCDM), it systematically studies the coupling relationship between Chinese cold chain logistics and the Chinese economy from 2010 to 2019. It performs a grey relational analysis (GRE) to explore the main factors influencing the coordinated development of the two. The results show that the coupling coordination degree between the two presents a steady upward trend, and their coupling relationship has been upgraded from 'coordination' to 'good coordination'. They also indicate that the added value in the tertiary industry, the per capita gross domestic product (GDP), and household consumption levels are the main factors affecting the development of cold chain logistics, while the per capita cold storage capacity, the turnover of road cold chain freight, and the volume of human-power employed in cold chain logistics are the main factors affecting economic development. This study makes suggestions to support the coordinated development of cold chain logistics and economy, and provides a scientific basis for further research.


Assuntos
Desenvolvimento Econômico , Refrigeração , China , Bases de Dados Factuais , Produto Interno Bruto , Probabilidade , Desenvolvimento Sustentável
9.
Int J Mol Med ; 43(1): 413-425, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387813

RESUMO

Stroke survivors often experience social isolation, which can lead to post­stroke depression (PSD) and post­stroke anxiety (PSA) that can compromise neurogenesis and impede functional recovery following the stroke. The present study aimed to investigate the effects and mechanisms of post­stroke social isolation­mediated PSD and PSA on hippocampal neurogenesis and cognitive function. The effects of the natural antidepressant hyperforin on post­stroke social isolation­mediated PSD and PSA were also investigated. In the present study, a model of PSD and PSA using C57BL/6J male mice was successfully established using middle cerebral artery occlusion combined with post­stroke isolated housing conditions. It was observed that PSD and PSA were more prominent in the isolated mice compared with the pair­housed mice at 14 days post­ischemia (dpi). Mice isolated 3 dpi exhibited decreased transforming growth factor­ß (TGF­ß) levels and impairment of hippocampal neurogenesis and memory function at 14 dpi. Intracerebroventricular administration of recombinant TGF­ß for 7 consecutive days, starting at 7 dpi, restored the reduced hippocampal neurogenesis and memory function induced by social isolation. Furthermore, intranasal administration of hyperforin for 7 consecutive days starting at 7 dpi improved PSD and PSA and promoted hippocampal neurogenesis and memory function in the isolated mice at 14 dpi. The inhibition of TGF­ß with a neutralizing antibody prevented the effects of hyperforin. In conclusion, the results revealed a previously uncharacterized role of hyperforin in improving post­stroke social isolation­induced exaggeration of PSD and PSA and, in turn, promoting hippocampal neurogenesis and cognitive function via TGF­ß.


Assuntos
Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Depressão/tratamento farmacológico , Depressão/etiologia , Floroglucinol/análogos & derivados , Isolamento Social , Acidente Vascular Cerebral/complicações , Terpenos/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Depressão/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Terpenos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...