Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 249: 114400, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508809

RESUMO

Plutella xylostella (L.) is a migratory species and an important insect pest of cruciferous crops worldwide, and Chrysoperla sinica (Tjeder) is a predaceous insect of agricultural and forest pests in the field. Indoxacarb has two enantiomers: (+)-S-indoxacarb and (-)-R-indoxacarb. This study was conducted to clarify the selective toxicity and sublethal effects of both enantiomers on P. xylostella and C. sinica. The (+)-S-indoxacarb isomer had greater acute toxicity to P. xylostella and C. sinica, while (-)-R-indoxacarb had less toxicity to P. xylostella and low toxicity to C. sinica. Lethal concentration 25 % (LC25) of (+)-S-indoxacarb had significant effects on the development, population, and fecundity of P. xylostella and C. sinica. The LC25 concentration of (-)-R-indoxacarb had a significant effect on the oviposition of P. xylostella. The field recommended concentration of (-)-R-indoxacarb significantly affected the pupal stage, adult survival rate, oviposition, and larval survival rate of C. sinica. Both enantiomers could significantly affect the search efficiency, successful attack rate, prey handling time, and maximum predation of C. sinica larvae, and the effects of (+)-S-indoxacarb alone were greater than those of (-)-R-indoxacarb. This study provided evidence of the different selective toxicity, sublethal effects of indoxacarb enantiomers on P. xylostella and C. sinica, which of the results could provide a basis for more rational use of indoxacarb in ecosystems.


Assuntos
Inseticidas , Mariposas , Animais , Feminino , Inseticidas/toxicidade , Ecossistema , Larva , Resistência a Inseticidas
2.
Pestic Biochem Physiol ; 172: 104768, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518055

RESUMO

The melon aphid, Aphis gossypii, is an important pest of vegetables. Insecticide resistance in A. gossypii has increased due to the frequent use of insecticides. We studied the levels and mechanisms of A. gossypii resistance to imidacloprid, acetamiprid and lambda-cyhalothrin here. The resistance levels of the three insecticides in 20 populations of A. gossypii varied. When compared to the susceptible strain (Lab-SS), there were two moderate resistance (MR) populations and nine low resistance (LR) populations to imidacloprid, respectively, two MR populations and two LR populations to acetamiprid, respectively, and, five MR populations and two LR populations to λ-cyhalothrin, respectively. Gene mutation detection in the MR level populations showed arginine to threonine substitution (R81T) in three populations and lysine to glutamine substitution (K264E) in the nicotinic acetylcholine receptor (nAChR) ß1 subunit in one population, respectively. No valine to isoleucine substitution (V62I) was found in the nAChR ß1 subunit in any of the tested populations. The leucine to phenylalanine substitution (L1014F) in sodium channel α subunit was found in five MR populations. The relative expression of the CYP6CY13 gene was significantly upregulated in the Daiyue and Shenxian populations. The CYP6CY14 gene was significantly upregulated in Daiyue, Dongchangfu, Shenxian, Mengyin and Anqiu populations. The CYP6CY19 gene was significantly upregulated in the Dongchangfu and Mengyin populations. The relative expressions of the esterase E4 or FE4 genes were significantly upregulated in most of the MR populations. These results provide insight into the current insecticide resistance of A. gossypii and may contribute to more effective resistance management strategies.


Assuntos
Afídeos , Cucurbitaceae , Inseticidas , Animais , Afídeos/genética , China , Resistência a Inseticidas/genética , Inseticidas/toxicidade
3.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32620012

RESUMO

The diamondback moth (Plutella xylostella, DBM) is an important pest of cruciferous vegetables. The use of chlorantraniliprole has been essential in the management of the DBM. However, in many countries and areas, DBM has become highly resistant to chlorantraniliprole. Three different DBM strains, susceptible (S), chlorantraniliprole-selected (Rc), and field-collected (Rb) resistant strains/populations were studied for the role of phenoloxidase in resistance development to the insecticide. By assaying the activity of phenoloxidase (PO) in the three different DBM strains, the results showed that the PO activity in the Rc strain was increased significantly compared with the S strain. The synergistic effects of quercetin showed that the resistant ratio (RR) of the QRc larvae to chlorantraniliprole was decreased from 423.95 to 316.42-fold compared with the Rc larvae. Further studies demonstrated that the transcriptional and translational expression levels of PxPPO1 (P. xylostella prophenoloxidase-1 gene) and PxPPO2 (P. xylostella prophenoloxidase-2 gene) were increased to varying degrees compared with the S strain, such as the transcriptional expression levels of PxPPO2 were 24.02-fold that of the S strain. The responses of phenoloxidase were significantly different in chlorantraniliprole-resistant DBM.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Monofenol Mono-Oxigenase/genética , Mariposas/enzimologia , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/crescimento & desenvolvimento
4.
Chemosphere ; 250: 126321, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135440

RESUMO

The lacewing, Chrysoperla sinica, is an important predatory insect, which plays an important role in the integrated pest management of agroforestry pests. However, the extensive use of insecticides negatively affects C. sinica. The acute toxicity, risk level, and, sublethal effects on growth and production, predation ability, protective enzyme activity and genotoxicity of four insecticides: indoxacarb, emamectin benzoate, imidacloprid and lambda-cyhalothrin to C. sinica were studied. The results showed that all four insecticides had lethal toxicity to larvae of C. sinica. Among them, emamectin benzoate had the highest toxicity with LC50 value of 7.41 mg/L. The insecticides also had different effects on the growth and reproduction of C. sinica, of which lambda-cyhalothrin had the greatest impacts. Even at a very low LC1 concentration (3.37 mg/L), it had strong impacts on the growth, reproduction and predatory ability of C. sinica. The four insecticides also caused a decrease in the predatory ability of the lacewing, of which lambda-cyhalothrin had the greatest effect. During the larval stage, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly decreased by the four insecticides. At the pupal and adult stages, the effects of the four insecticides on the activities of protective enzymes were different, and the activities of SOD, CAT and POD decreased or increased. Indoxacarb and lambda-cyhalothrin exposure induced DNA damage in the haemocytes of C. sinica and produced obvious genotoxicity. These results provide important scientific basis for the rational use of these insecticides and the protection and utilization of lacewing.


Assuntos
Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrilas , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Piretrinas , Testes de Toxicidade Aguda
5.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829164

RESUMO

The southern root-knot nematode (RKN), Meloidogyne incognita, causes significant damage to vegetable production and is a major problem in greenhouse tomatoes. The effect of a combination of fluopyram and abamectin, at a mass ratio of 1:5, was studied for RKN control. Pot trials showed that fluopyram, abamectin, and their combination at three dosages increased the height, stem diameter, root fresh weight, shoot fresh weight, and the root length of tomato plants. The RKN control efficacy of the 1:5 combination at 450 g a.i./ha was 74.06% at 30 days after transplanting (DAT), and the control efficacy of the combination at 337.5 and 450 g a.i./ha differed significantly from those of other treatments at 60 DAT. The root-galling index (RGI) control efficacy of the combination at 450 g a.i./ha and of fluopyram (41.7% SC) only at 450 g a.i./ha were better than the control efficacies of other treatments, and these two treatments significantly increased root activity. Field trial results showed that the soil nematode control efficacy was similar to that of the pot trials at 30 and 60 DAT. The RGI control efficacy of the combination at 337.5 and 450 g a.i./ha and of fluopyram (41.7% SC) only at 450 g a.i./ha differed significantly from those of the two other treatments. The tomato yields of the 1:5 combination at 450 g a.i./ha were increased by 24.07 and 23.22% compared to the control in field trials during two successive years. The combination of fluopyram and abamectin provides good nematode measure, and it can increase tomato yields. It provides an effective solution for the integrated management of southern RKN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...