Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928199

RESUMO

Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, ß- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.


Assuntos
Carotenoides , Frutas , Regulação da Expressão Gênica de Plantas , Metaboloma , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Carotenoides/metabolismo , Perfilação da Expressão Gênica/métodos , Licopeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética , Cor
2.
Front Plant Sci ; 15: 1397765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711609

RESUMO

Calreticulin (CRT) is a calcium-binding endoplasmic reticulum (ER) protein that has been identified for multiple cellular processes, including protein folding, regulation of gene expression, calcium (Ca2+) storage and signaling, regeneration, and stress responses. However, the lack of information about this protein family in tomato species highlights the importance of functional characterization. In the current study, 21 CRTs were identified in four tomato species using the most recent genomic data and performed comprehensive bioinformatics and SlCRT expression in various tissues and treatments. In the bioinformatics analysis, we described the physiochemical properties, phylogeny, subcellular positions, chromosomal location, promoter analysis, gene structure, motif distribution, protein structure and protein interaction. The phylogenetic analysis classified the CRTs into three groups, consensus with the gene architecture and conserved motif analyses. Protein structure analysis revealed that the calreticulin domain is highly conserved among different tomato species and phylogenetic groups. The cis-acting elements and protein interaction analysis indicate that CRTs are involved in various developmental and stress response mechanisms. The cultivated and wild tomato species exhibited similar gene mapping on chromosomes, and synteny analysis proposed that segmental duplication plays an important role in the evolution of the CRTs family with negative selection pressure. RNA-seq data analysis showed that SlCRTs were differentially expressed in different tissues, signifying the role of calreticulin genes in tomato growth and development. qRT-PCR expression profiling showed that all SlCRTs except SlCRT5 were upregulated under PEG (polyethylene glycol) induced drought stress and abscisic acid (ABA) treatment and SlCRT2 and SlCRT3 were upregulated under salt stress. Overall, the results of the study provide information for further investigation of the functional characterization of the CRT genes in tomato.

3.
Plant Physiol Biochem ; 210: 108589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593485

RESUMO

Carotenoids are important pigmented nutrients synthesized by tomato fruits during ripening. To reveal the molecular mechanism underlying carotenoid synthesis during tomato fruit ripening, we analyzed carotenoid metabolites and transcriptomes in six development stages of tomato fruits. A total of thirty different carotenoids were detected and quantified in tomato fruits from 10 to 60 DPA. Based on differential gene expression profiles and WGCNA, we explored several genes that were highly significant and negatively correlated with lycopene, all of which encode fasciclin-like arabinogalactan proteins (FLAs). The FLAs are involved in plant signal transduction, however the functional role of these proteins has not been studied in tomato. Genome-wide analysis revealed that cultivated and wild tomato species contained 18 to 22 FLA family members, clustered into four groups, and mainly evolved by means of segmental duplication. The functional characterization of FLAs showed that silencing of SlFLA1, 5, and 13 were found to contribute to the early coloration of tomato fruits, and the expression of carotenoid synthesis-related genes was up-regulated in fruits that changed phenotypically, especially in SlFLA13-silenced plants. Furthermore, the content of multiple carotenoids (including (E/Z)-phytoene, lycopene, γ-carotene, and α-carotene) was significantly increased in SlFLA13-silenced fruits, suggesting that SlFLA13 has a potential inhibitory function in regulating carotenoid synthesis in tomato fruits. The results of the present study broaden the idea of analyzing the biological functions of tomato FLAs and preliminary evidence for the inhibitory role of SlFLA13 in carotenoid synthesis in fruit, providing the theoretical basis and a candidate for improving tomato fruit quality.


Assuntos
Carotenoides , Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Carotenoides/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Galactanos/metabolismo , Galactanos/biossíntese , Mucoproteínas/metabolismo , Mucoproteínas/genética
4.
J Environ Manage ; 351: 119859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128213

RESUMO

The priming effect stands as a critical factor influencing the balance of soil organic carbon (SOC). Following vegetation restoration, the carbon (C) pool stability in Platycladus orientalis forests (PO) varies, and the priming effect resulting from exogenous C addition also differs significantly. Here, we selected PO with restoration ages of 10, 15, and 30 years in the rocky mountainous area in northern China and conducted measurements of soil properties, microbial communities, microbial necromass C (MNC), SOC fractions, and the priming effect characteristics to explore the main influencing factors of the priming effect, especially the microbiological mechanisms. Our results showed that the ratio of mineral-associated organic C to particulate organic C increased. The characteristics of the priming effect showed the same pattern, and there was a significant positive correlation between the C pool stability and the priming effect. The diversity of the fungal communities increased with increasing vegetation restoration age, and the content and proportion of fungal necromass C (FNC) also increased synchronously, reaching the maximum value in the soil of PO that had been restored for 30 years. In addition, the soil water content and total nitrogen indirectly affected the priming effect by influencing the microbial communities. In summary, the results suggested that vegetation restoration can enhance the C pool stability by promoting an increase in soil FNC, thereby producing a positive priming effect. This can help deepen our understanding of the SOC mineralization changes induced by fresh C input following vegetation restoration and provides a theoretical basis for better explaining the C cycle between soil and atmosphere under the vegetation restoration models in the future.


Assuntos
Carbono , Solo , Carbono/análise , Microbiologia do Solo , Florestas , China , Minerais
5.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570984

RESUMO

Alfin-like (AL) transcription factors are a family of plant-specific genes with a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus that play important roles in plant development and stress response. In the present study, genome-wide identification and analysis were performed of the AL protein family in cultivated tomato (Solanum lycopersicum) and three wild relatives (S. pennellii, S. pimpinellifolium, and S. lycopersicoides) to evaluate their response to different abiotic stresses. A total of 39 ALs were identified and classified into four groups and based on phylogenetic tree and evolutionary analysis were shown to have formed prior to the differentiation of monocotyledons and dicots. Moreover, cis-acting element analysis revealed that various phytohormone response and abiotic stress response elements were highly existed in tomato. In addition, further analysis of the SlAL3 gene revealed that its expression was induced by drought and salt stresses and localized to the nucleus. In conclusion, our findings concerning AL genes provide useful information for further studies on their functions and regulatory mechanisms and provide theoretical references for studying AL gene response to abiotic stresses in plants.

6.
Front Plant Sci ; 14: 1204990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346127

RESUMO

Phenylalanine ammonia-lyase (PAL) is a key enzyme and rate-limiting enzyme of phenylpropanoid metabolism, which is a very important pathway in plants, and the secondary products it produces play an important role in plant growth and development, disease resistance, and stress resistance responses. However, PALs still lack systematic characterization in tomato. Based on a bioinformatics methods, PAL family genes were identified and characterized from tomato. qRT-PCR was used to study the expression of PAL genes in cultivated tomato after root-knot nematode infection. In this study, 14 and 11 PAL genes were identified in cultivated and wild tomatoes, and phylogenetic analysis classified them into three subfamilies, with different subfamilies of PAL proteins evolving in different directions in monocotyledonous and dicotyledonous plants. The extensive presence of stress, growth, hormone, and light response elements in the promoter sequences of SlPAL (Solanum lycopersicum) and SpenPAL (Solanum pennellii) genes suggests that this family has a critical role in abiotic stress. Collinearity indicates that members of the tomato and Arabidopsis PAL genes family are from the same ancestor, and the SlPAL10 gene is directly homologous to monocotyledonous rice and maize, suggesting that the SlPAL10 gene was present before monocotyledonous differentiation. Two co-expressed gene modules containing PAL genes were screened by WGCNA, and the core genes in the network were mined and functionally annotated by calculating the connectivity of genes within the modules. In addition, the expression of some genes changed significantly after root-knot nematode infection, with up-regulation of 4 genes and down-regulation of 3 genes. This result provides a data reference for the study of PAL family gene functions in tomato, and also provides a potential application for the subsequent selection of PAL genes in tomato for root-knot nematode resistance.

7.
Genes (Basel) ; 14(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372453

RESUMO

WD40 proteins are a superfamily of regulatory proteins widely found in eukaryotes that play an important role in regulating plant growth and development. However, the systematic identification and characterization of WD40 proteins in tomato (Solanum lycopersicum L.) have not been reported. In the present study, we identified 207 WD40 genes in the tomatoes genome and analyzed their chromosomal location, gene structure and evolutionary relationships. A total of 207 tomato WD40 genes were classified by structural domain and phylogenetic tree analyses into five clusters and 12 subfamilies and were found to be unevenly distributed across the 12 tomato chromosomes. We identified six tandem duplication gene pairs and 24 segmental duplication pairs in the WD40 gene family, with segmental duplication being the major mode of expansion in tomatoes. Ka/Ks analysis revealed that paralogs and orthologs of WD40 family genes underwent mainly purifying selection during the evolutionary process. RNA-seq data from different tissues and developmental periods of tomato fruit development showed tissue-specific expression of WD40 genes. In addition, we constructed four coexpression networks according to the transcriptome and metabolome data for WD40 proteins involved in fruit development that may be related to total soluble solid formation. The results provide a comprehensive overview of the tomato WD40 gene family and will provide valuable information for the validation of the function of tomato WD40 genes in fruit development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Família Multigênica , Filogenia , Fatores de Transcrição/genética , Genoma de Planta/genética
8.
Nat Genet ; 55(5): 852-860, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024581

RESUMO

Effective utilization of wild relatives is key to overcoming challenges in genetic improvement of cultivated tomato, which has a narrow genetic basis; however, current efforts to decipher high-quality genomes for tomato wild species are insufficient. Here, we report chromosome-scale tomato genomes from nine wild species and two cultivated accessions, representative of Solanum section Lycopersicon, the tomato clade. Together with two previously released genomes, we elucidate the phylogeny of Lycopersicon and construct a section-wide gene repertoire. We reveal the landscape of structural variants and provide entry to the genomic diversity among tomato wild relatives, enabling the discovery of a wild tomato gene with the potential to increase yields of modern cultivated tomatoes. Construction of a graph-based genome enables structural-variant-based genome-wide association studies, identifying numerous signals associated with tomato flavor-related traits and fruit metabolites. The tomato super-pangenome resources will expedite biological studies and breeding of this globally important crop.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Estudo de Associação Genômica Ampla , Genoma de Planta/genética , Melhoramento Vegetal , Solanum/genética , Genômica
9.
Sci Total Environ ; 881: 163492, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062318

RESUMO

Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial community. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bacterial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abundance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when studying the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Microbiologia do Solo , Florestas , Bactérias
10.
BMC Plant Biol ; 23(1): 116, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849913

RESUMO

BACKGROUND: Our previous studies revealed that CgbHLH001 transcription factor (TF) played an important role in abiotic stress tolerance, suggesting that its promoter was a potential target in response to stress signals. In addition, the regulatory mechanism of CgbHLH001 TF is still limited. RESULTS: In the present study, a 1512 bp of 5'-flanking sequence of CgbHLH001 gene was identified, and the sequence carried quite a few of cis-acting elements. The gene promoter displayed strong activity and was induced by multiple abiotic stress. A series of 5'-deletions of the promoter sequence resulted in a gradual decrease in its activity, especially, the 5' untranslated region (UTR) was necessary to drive promoter activity. Further, CgbHLH001 promoter drove its own gene overexpression ectopically at the transcriptional and translational levels, which in turn conferred the stress tolerance to transgenic Arabidopsis. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple biological regulatory processes. Differentially expressed genes (DEGs) that mediate phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway were widely induced and mostly upregulated under salt stress, and the transcription levels in PbHLH::bHLH-overexpressing transgenic lines were higher than that of 35S::bHLH overexpression. CONCLUSIONS: The CgbHLH001 promoter exhibited a positive response to abiotic stress and its 5' UTR sequence enhanced the regulation of gene expression to stress. A few important pathways and putative key genes involved in salt tolerance were identified, which can be used to elucidate the mechanism of salt tolerance and decipher the regulatory mechanism of promoters to develop an adaptation strategy for desert halophytes.


Assuntos
Arabidopsis , Chenopodiaceae , Chenopodium , Regiões Promotoras Genéticas/genética , Perfilação da Expressão Gênica , Estresse Salino , Regiões 5' não Traduzidas/genética , Arabidopsis/genética
11.
Front Plant Sci ; 14: 1115593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814758

RESUMO

Salt stress has become one of the main limiting factors affecting the normal growth and development of tomatoes as well as fruit quality and yields. To further reveal the regulatory relationships between tomato hormones under salt stress, the interaction between hormones and TF and the genome-wide gene interaction network were analyzed and constructed. After salt treatment, the levels of ABA, SA, and JA were significantly increased, the levels of GA were decreased, and IAA and tZ showed a trend of first increasing and then decreasing. The expression patterns of hormone biosynthesis and signal transduction related genes were analyzed based on RNA-seq analysis, the co-expression network of hormones and genome-wide co-expression networks were constructed using weighted gene co-expression network analysis (WGCNA). The expression patterns of specific transcription factors under salt stress were also systematically analyzed and identified 20 hormone-related candidate genes associated with salt stress. In conclusion, we first revealed the relationship between hormones and genes in tomatoes under salt stress based on hormone and transcriptome expression profiles and constructed a gene regulatory network. A transcriptional regulation model of tomato consisted of six types of hormones was also proposed. Our study provided valuable insights into the molecular mechanisms regulating salt tolerance in tomatoes.

12.
PeerJ ; 11: e14844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815985

RESUMO

Wild tomato germplasm is a valuable resource for improving biotic and abiotic stresses in tomato breeding. The HVA22 is widely present in eukaryotes and involved in growth and development as well as stress response, such as cold, salt, drought, and biotic stress. In the present study, we identified 45 HVA22 genes in three wild species of tomatoes. The phylogenetic relationships, gene localization to chromosomes, gene structure, gene collinearity, protein interactions, and cis-acting element prediction of all 45 HVA22 genes (14 in Solanum pennellii, 15 in S. pimpinellifolium, and 16 in S. lycopersicoides) were analyzed. The phylogenetic analysis showed that the all HVA22 proteins from the family Solanaceae were divided into three branches. The identified 45 HVA22 genes were grouped into four subfamilies, which displayed similar number of exons and expanded in a fragmentary replication manner. The distribution of HVA22 genes on the chromosomes of the three wild tomato species was also highly similar. RNA-seq and qRT-PCR revealed that HVA22 genes were expressed in different tissues and induced by drought, salt, and phytohormone treatments. These results might be useful for explaining the evolution, expression patterns, and functional divergence of HVA22 genes in Lycopersicon.


Assuntos
Solanum lycopersicum , Solanum , Filogenia , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/farmacologia
14.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203328

RESUMO

To explore the function of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) in tomatoes, members of the tomato PIP5K family were identified and characterized using bioinformatic methods, and their expression patterns were also analyzed under salt stress and in different tissues. Twenty-one PIP5K members-namely, SlPIP5K1-SlPIP5K21-were identified from ten chromosomes, and these were divided into three groups according to a phylogenetic analysis. Further bioinformatic analysis showed four pairs of collinear relationships and fragment replication events among the SlPIP5K family members. To understand the possible roles of the SlPIP5Ks, a cis-acting element analysis was conducted, which indicated that tomato PIP5Ks could be associated with plant growth, hormones, and stress responses. We further validated the results of the in silico analysis by integrating RNA-seq and qRT-PCR techniques for salt- and hormone-treated tomato plants. Our results showed that SlPIP5K genes exhibited tissue- and treatment-specific patterns, and some of the SlPIP5Ks exhibited significantly altered expressions after our treatments, suggesting that they might be involved in these stresses. We selected one of the SlPIP5Ks that responded to our treatments, SlPIP5K2, to further understand its subcellular localization. Our results showed that SlPIP5K2 was located on the membrane. This study lays a foundation for the analysis of the biological functions of the tomato SlPIP5K genes and can also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation, especially under salt stress.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Fosfatos , Filogenia , Melhoramento Vegetal , Biologia Computacional , Reguladores de Crescimento de Plantas
15.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559607

RESUMO

The 14-3-3 proteins, which are ubiquitous and highly conserved in eukaryotic cells, play an essential role in various areas of plant growth, development, and physiological processes. The tomato is one of the most valuable vegetable crops on the planet. The main objective of the present study was to perform genome-wide identification and analysis of the tomato 14-3-3 (SlTFT) family to investigate its response to different abiotic stresses and phytohormone treatments in order to provide valuable information for variety improvement. Here, 13 SlTFTs were identified using bioinformatics methods. Characterization showed that they were categorized into ε and non-ε groups with five and eight members, accounting for 38.5% and 61.5%, respectively. All the SlTFTs were hydrophilic, and most of them did not contain transmembrane structural domains. Meanwhile, the phylogeny of the SlTFTs had a strong correlation with the gene structure, conserved domains, and motifs. The SlTFTs showed non-random chromosomal distribution, and the promoter region contained more cis-acting elements related to abiotic stress tolerance and phytohormone responses. The results of the evolutionary analysis showed that the SlTFTs underwent negative purifying selection during evolution. Transcriptional profiling and gene expression pattern analysis showed that the expression levels of the SlTFTs varied considerably in different tissues and periods, and they played a specific role under various abiotic stresses and phytohormone treatments. Meanwhile, the constructed protein-based interaction network systematically broadens our understanding of SlTFTs. Finally, the virus-induced gene silencing of SlTFT4 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced salt resistance in tomatoes.

16.
Front Plant Sci ; 13: 1023696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570882

RESUMO

As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.

17.
BMC Plant Biol ; 22(1): 596, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536303

RESUMO

BACKGROUND: Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS: Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION: These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.


Assuntos
Solanum lycopersicum , Solanum , Reguladores de Crescimento de Plantas , Secas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Solanum/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
18.
J Plant Physiol ; 279: 153834, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272175

RESUMO

Calcium-dependent protein kinases (CDPKs, CPKs) represent a vital class of calcium sensors, which play a crucial role in plant growth, development and adaption to complex environmental stresses. Wild species tend to exhibit greater tolerance than cultivated species under environmental stress. Here, we isolated a calcium-dependent protein kinase gene SpCPK33 located primarily on the plasma membrane of abiotic-resistant species (Solanum pennellii LA0716). It was highly expressed in stems and leaves and was also induced by cold stress. Compared with WT plants, the overexpression of SpCPK33 in cultivated tomato (cv M82) enhanced its tolerance to cold stress. Transgenic lines demonstrated strong vitality under low temperature treatment. Moreover, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were decreased in SpCPK33-overexpressing plants. The activities of antioxidant enzymes and the levels of osmotic regulatory substances were higher. The transcript levels of cold stress-related genes were up-regulated. In summary, the results indicate that SpCPK33-overexpressing transgenic plants experience less severe chilling injury under cold stress, and improved tomato cold tolerance by scavenging ROS accumulation and modulating the expression of stress-related genes.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/metabolismo , Solanum/genética , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Temperatura Baixa , Resposta ao Choque Frio , Proteínas Quinases/genética
19.
Front Plant Sci ; 13: 834027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865296

RESUMO

As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.

20.
J Environ Manage ; 317: 115472, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751271

RESUMO

Soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) are important indicators reflecting soil quality, and they can be used to effectively evaluate the effect of soil remediation. Many studies have evaluated the content of SOC, TN and TP in different ecosystems. However, after constructing protected forests for ecological restoration in the ecologically fragile coastal zone, the spatial distribution and influencing mechanism of SOC, TN and TP content is still uncertain. In this study, the spatial heterogeneity and influencing factors of SOC, TN and TP in surface (0-20 cm) soil were analyzed by traditional analysis and geostatistics. A total of 39 soil samples were collected under the coastal zone protected forest types including Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP), mixed PTP and QAC (QP) and Castanea mollissima BL (CMB) in the coastal zone protected forests in northern China. The results show that SOC, TN and TP content were defined as moderate variation, and they also show significant changes under different protected forest types (P < 0.05). The semivariance results indicate that SOC, TN and TP all exhibited strong spatial dependence class, with Range of 224 m, 229 m and 282 m respectively, which were more than the sampling scale of 200 m. The spatial prediction results showed that SOC, TN and TP content all appear in large areas of extremely low value in CMB, and its cross validation results showed that using vegetation and terrain factors as covariates in the spatial prediction of SOC, TN and TP can improve the prediction accuracy. The results of correlation analysis showed that the influencing factor for SOC and TN, and TP were NDVI and topographical changes, respectively. In general, vegetation and terrain factors as auxiliary factors can improved the accuracy of soil C-N-P spatial distribution prediction after afforestation in coastal zone.


Assuntos
Quercus , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...