Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734232

RESUMO

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Assuntos
Enoil-CoA Hidratase , Hepatócitos , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Oxirredução , Peroxissomos , Tamoxifeno , Animais , Tamoxifeno/farmacologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Masculino , Peroxissomos/metabolismo , Peroxissomos/efeitos dos fármacos , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/genética , Regulação para Cima/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Ácidos Graxos/metabolismo
2.
Br J Cancer ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796598

RESUMO

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.

3.
Ecotoxicol Environ Saf ; 272: 116072, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342011

RESUMO

Triptolide (TP) is the major bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., a traditional Chinese medicinal plant categorized within the Tripterygium genus of the Celastraceae family. It is recognized for its therapeutic potential in addressing a multitude of diseases. Nonetheless, TP is known to exhibit multi-organ toxicity, notably hepatotoxicity, which poses a significant concern for the well-being of patients undergoing treatment. The precise mechanisms responsible for TP-induced hepatotoxicity remain unresolved. In our previous investigation, it was determined that TP induces heightened hepatic responsiveness to exogenous lipopolysaccharide (LPS). Additionally, natural killer (NK) cells were identified as a crucial effector responsible for mediating hepatocellular damage in this context. However, associated activating receptors and the underlying mechanisms governing NK cell represented innate lymphoid cell (ILC) activation remained subjects of inquiry and were not yet investigated. Herein, activating receptor Killer cell lectin like receptor K1 (NKG2D) of group 1 ILCs was specifically upregulated in TP- and LPS-induced acute liver failure (ALF), and in vivo blockade of NKG2D significantly reduced group 1 ILC mediated cytotoxicity and mitigated TP- and LPS-induced ALF. NKG2D ligand UL16-binding protein-like transcript 1 (MULT-1) was found upregulated in liver resident macrophages (LRMs) after TP administration, and LRMs did exhibit NK cell activating effect. Furthermore, M1 polarization of LRMs cells was observed, along with an elevation in intracellular tumor necrosis factor (TNF)-α levels. In vivo neutralization of TNF-α significantly alleviated TP- and LPS-induced ALF. In conclusion, the collaborative role of group 1 ILCs and LRMs in mediating hepatotoxicity was confirmed in TP- and LPS-induced ALF. TP-induced MULT-1 expression in LRMs was the crucial mechanism in the activation of group 1 ILCs via MULT-1-NKG2D signal upon LPS stimulation, emphasizing the importance of infection control after TP administration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Fenantrenos , Animais , Humanos , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Lipopolissacarídeos/toxicidade , Imunidade Inata , Fenantrenos/toxicidade , Compostos de Epóxi/toxicidade , Células Matadoras Naturais , Macrófagos , Doença Hepática Induzida por Substâncias e Drogas/etiologia
4.
J Mol Model ; 30(2): 26, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191945

RESUMO

CONTEXT: The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of HF on the resultant NaF as well as the (NaF)4 tetramer. The results suggest that the reaction between Na and HF leads to the formation of sodium fluoride salt NaF and hydrogen gas. Na interacts with HF to form a complex HF···Na, and then the approaching of F atom of HF to Na results in a transition state H···F···Na. Accompanied by the broken of H-F bond, the bond forms between F and Na atoms as NaF, then the product NaF is yielded due to the removal of H atom. The resultant NaF can further form (NaF)4 tetramer. The interaction of NaF with HF leads to the complex NaF···HF; the form I as well as II of (NaF)4 can interact with HF to produce two complexes (i.e., (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF), but the form III of (NaF)4 can interact with HF to produce only one complex (NaF)4(III)···HF. These complexes were explored in terms of noncovalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. NCI analyses confirm the existences of attractive interactions in the complexes HF···Na, NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF. QTAIM analyses suggest that the F···Na interaction forms in the HF···Na complex while the F···H hydrogen bonds form in NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF complexes. Natural bond orbital (NBO) analyses were also applied to analyze the intermolecular donor-acceptor orbital interactions in these complexes. These results would provide valuable insight into the chemical reaction of Na and HF and the adsorption interaction between sodium fluoride salt and HF. METHODS: The calculations were carried out at the M06-L/6-311++G(2d,2p) level of theory which were performed using the Gaussian16 program. Intrinsic reaction coordinate (IRC) calculations were carried out at the same level of theory to confirm that the obtained transition state was true. The molecular surface electrostatic potential (MSEP) was employed to understand how the complex forms. Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) analysis was used to know the topology parameters at bond critical points (BCPs) and intermolecular interactions in the complex and intermediate. The topology parameters and the BCP plots were obtained by the Multiwfn software.

5.
Chem Res Toxicol ; 37(2): 407-418, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38284557

RESUMO

Triptolide (TP) is a remarkable anti-inflammatory and immunosuppressive component separated from Tripterygium wilfordii Hook. F. However, its hepatotoxicity limits its application in the clinical. Our group has proposed a new perspective on TP-induced hepatotoxicity, in which TP enhances liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. Because the cause of the disease is unknown, there is currently no uniform treatment available. In this study, we attempted to determine whether the GSK-3ß-JNK pathway affects liver damage and its regulatory mechanism in response to TP/LPS costimulation. In addition, we investigated the effect of CsA or the GSK 3ß inhibitor CHIR-98014 on TP/LPS-induced hepatotoxicity. The results showed that the TP/LPS cotreatment mice exhibited obvious hepatotoxicity, as indicated by a remarkable increase in the serum ALT and AST levels, glycogen depletion, GSK 3ß-JNK upregulation, and increased apoptosis. Instead of the specific knockdown of JNK1, the specific knockdown of JNK2 had a protective effect. Additionally, 40 mg/kg of CsA and 30 mg/kg of CHIR-98014 might provide protection. In summary, CHIR-98014 could protect against TP/LPS- or TP/TNF-α-induced activation of the GSK 3ß-JNK pathway and mitochondria-dependent apoptosis, improving the indirect hepatotoxicity induced by TP.


Assuntos
Aminopiridinas , Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Fenantrenos , Pirimidinas , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/farmacologia , Lipopolissacarídeos/toxicidade , Mitocôndrias , Apoptose , Diterpenos/farmacologia , Fenantrenos/farmacologia , Compostos de Epóxi/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
6.
Life Sci ; 337: 122355, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104861

RESUMO

AIMS: Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS: LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS: OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE: OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.


Assuntos
Colestase , Ácido Litocólico , Camundongos , Animais , Ácido Litocólico/efeitos adversos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/complicações , Colestase/tratamento farmacológico , Ácidos e Sais Biliares/metabolismo , Apoptose
7.
Toxicol Lett ; 390: 25-32, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944651

RESUMO

Triptolide (TP) is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF). Its severe toxic side effects, especially hepatotoxicity, have limited the clinical application of TP-related drugs. In this study, we investigated the mechanism of the hepatotoxic effects of TP from the perspective that TP inhibited the expression of the pro-survival protein X-linked inhibitor of apoptosis protein (XIAP) and enhanced FasL-mediated apoptosis of hepatocytes. TP and CD95/Fas antibody (Jo-2) were administered by gavage to C57BL/6 mice for 7 consecutive days. After co-administration of TP and Jo-2, mouse livers showed large areas of necrosis and apoptosis and significantly increased Caspase-3 activity. KEGG pathway enrichment analysis indicated that TP may cause the development of liver injury through the apoptotic signaling pathway. Proteinprotein interaction networks showed that XIAP played an essential role in this process. TP reduced the protein expression of XIAP after combination treatment with Jo-2/FasL in vivo/in vitro. TP and FasL co-stimulation significantly increased microRNA-137 (miR-137) levels in AML12 cells, while inhibition of miR-137 expression induced a rebound in XIAP protein expression. In conclusion, TP presensitizes hepatocytes and enhances the sensitivity of hepatocytes to the Fas/FasL pathway by inhibiting the protein expression of XIAP, leading to hepatocyte apoptosis.


Assuntos
MicroRNAs , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Camundongos , Animais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatócitos , Apoptose , MicroRNAs/metabolismo
8.
Front Neurol ; 14: 1171303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545723

RESUMO

Hemifacial spasm (HFS) is a rare movement disorder characterized by involuntary muscle contractions on one side of the face. Compared to the high therapeutic effect, adverse effects of botulinum toxin treatment for HFS occurred rarely. However, managing HFS patients who are also taking antithrombotic drugs poses a challenge. Here, we present a case of postoperative ecchymoma of the eyelid following a botulinum toxin injection in a patient receiving daily vinpocetine and aspirin antiplatelet therapy. This case highlights the importance of considering the potential risks and formulating a treatment plan that maximizes benefit while minimizing complications in HFS patients undergoing botulinum toxin injections and taking antithrombotic medications. To the best of our knowledge, this is the first reported case of postoperative ecchymoma of the eyelid following a botulinum toxin injection. Further research and additional case reports are needed to better understand the management strategies for this patient population.

9.
Chin J Nat Med ; 21(8): 589-598, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611977

RESUMO

Total glucosides of Rhizoma Smilacis Glabrae (RSG) are selective immunosuppressants that exhibit primary efficacy in the treatment of rheumatoid arthritis through targeted inhibition of activated T cells. In this study, we aimed to investigate the potential application of RSG in the treatment of psoriasis and elucidate its mechanism of action and material basis. Our findings revealed significant improvements upon administration of RSG in an imiquimod (IMQ)-induced psoriasis model. These improvements were characterized by a remarkable increase in the number of tail scales in mice and a substantial amelioration of skin erythema, ulceration, and flaking. By transcriptome sequencing and T-cell flow sorting assay, we identified notable effects of RSG on the modulation of various cellular processes. Specifically, RSG prominently down-regulated the Th17/Treg ratio in damaged skin tissues and reduced the proportion of G2 phase cells. Furthermore, RSG exhibited a stimulatory effect on the proliferation and differentiation of epithelial cells. Of particular interest, we discovered that ß-sitosterol, sitostenone, stigmasterol, smiglanin, and cinchonain Ib displayed potent inhibitory effects on the IL-17-mediated inflammatory response in HaCaT cells. In summary, our study highlights the therapeutic potential of RSG in the treatment of psoriasis, attributed to its ability to regulate the Th17/Treg balance. These findings contribute to the development of new indications for RSG and provide a solid theoretical foundation for further exploration in this field.


Assuntos
Artrite Reumatoide , Psoríase , Animais , Camundongos , Linfócitos T Reguladores , Psoríase/tratamento farmacológico , Bioensaio , Glucosídeos/farmacologia
10.
Parkinsonism Relat Disord ; 115: 105790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541789

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by motor and non-motor symptoms, including obstructive sleep apnea (OSA), a common comorbid sleep disorder. The prevalence of OSA in PD is high, and its impact on quality of life, accident risk, and limited treatment options underscores the need for vigilant monitoring and effective interventions. OSA is observed in 20-70% of PD patients, whereas the general population exhibits a lower prevalence ranging from 2 to 14%. These discrepancies in prevalence may be attributed to differences in demographic characteristics, sample sizes with selection bias, and variations in scoring systems for apnea and hypopnea events used across different studies. This review highlights the potential pathogenesis of comorbid OSA in PD and provides an overview of ongoing clinical trials investigating interventions for this condition. Several mechanisms have been implicated in the development of OSA in PD, including intermittent hypoxemia, sleep fragmentation, alterations in the glymphatic system homeostasis, upper airway obstruction, and inflammation. Given the adverse effects of PD comorbid OSA, early intervention measures are crucial. It is imperative to conduct longitudinal studies and clinical trials to elucidate the pathogenesis and develop novel and effective interventions for OSA in PD patients. These efforts aim to delay the progression of PD, enhance patients' quality of life, and alleviate the burden on society and families.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Apneia Obstrutiva do Sono , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Qualidade de Vida , Polissonografia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia
11.
Front Nutr ; 10: 1163823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090781

RESUMO

Background: Microplastics (MPs) and nanoplastics (NPs) have become emerging contaminants worldwide in food matrices. However, analytical approaches for their determination have yet to be standardized. Therefore, a systematic study is urgently needed to highlight the merits of mass spectrometry (MS) based methods for these applications. Purpose: The aim of the study is to review the current status of MS-based multimodal analysis for the determination of MPs in food matrices. Methods: Web of Science and Google Scholar databases were searched and screened until Jan. 2023. Inclusion criteria: "publication years" was set to the last decades, "English" was selected as the "language," and "research area" was set to environmental chemistry, food analysis and polymer science. The keywords were "microplastics," "nanoplastics," "determination," "identification/quantification," and "mass spectrometry." Results: Traditional spectrometry techniques offer good abilities to conduct the multimodal analysis of MPs in terms of color, shape and other morphologies. However, such technologies have some limitations, in particular the relatively high limits of detection. In contrast, MS-based methods supply excellent supplements. In MS-based methods, gas chromatographic-mass spectrometry (GC-MS), and LC-MS/MS were selected as representative methods for determining MPs in the food matrices, while specialized MS methods (i.e., MALDI-ToF MS and ToF-SIMS) were considered to offer great potential in multimodal analysis of MPs especially when interfaced with the imaging systems. Significance: This study will contribute to gaining a deeper insight into the assessment of the exposure levels of MPs in human body, and may help build a bridge between the monitoring studies and the toxicology field.

12.
Arch Biochem Biophys ; 741: 109617, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121295

RESUMO

This study aimed to investigate the effect and mechanism of 8-methoxypsoralen (8-MOP) on acetaminophen (APAP)-induced hepatotoxicity in mice. The study found that 1 h after intraperitoneal injection of 300 mg/kg APAP, treatment with 40 mg/kg, 80 mg/kg and 120 mg/kg 8-MOP could reduce serum transaminase level and histopathological liver necrosis area. Elevated mRNA expression of liver inflammatory mediators caused by excessive APAP was also reversed. 8-MOP significantly reduced APAP-induced hepatotoxicity dose-dependently, and the highest therapeutic dose of 8-MOP (120 mg/kg) had no harmful effects on the liver. Cocktail probe assay revealed that 8-MOP can inhibit Cyp2e1 enzymatic activities of mice, thereby reducing the production of acetaminophen-cysteine (APAP-CYS), a toxic metabolite of APAP. 8-MOP had no significant effect on the protein and gene expression of Cyp2e1. The three-dimensional structures of mouse Cyp2e1 were constructed by homologous modeling. Molecular docking showed that 8-MOP had a good binding effect on the enzyme activity site of Cyp2e1. In summary, 8-MOP dose-dependently attenuated APAP-induced hepatotoxicity by binding to Cyp2e1 and occupying the active center of the enzyme, thus competitively inhibiting the oxidative metabolism of APAP, and reducing the generation of toxic product APAP-CYS.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Metoxaleno , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular
13.
ACS Omega ; 8(11): 9807-9814, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969414

RESUMO

Hydrogen as clean energy can effectively solve the problems of fossil energy shortage and environmental pollution. However, traditional methods of H2 production are generally lacking in application value. The procedure for manufacturing H2 by a reaction between active metals and H2O has received wide attention due to its high efficiency. Profound insights into the mechanism and influencing factors of H2 production from active metals are insufficient. The ReaxFF reaction force field module of the Amsterdam Modeling Suite (AMS) is applied in this paper to simulate the reaction of Ni-Al alloys with H2O. It reveals the reaction route of H2 production at the atomic level. The calculation results show that Al is the most critical active site. Moreover, the H2 production capacity of the alloy varies with the crystal structure and atomic ratio. The H2 production rate decreases due to the influence of the water solvation layer and surface coverage. Oxygen reduces the H2 production capacity because oxygen reduces the active sites for H2O adsorption by forming a stable oxide layer with Al.

14.
Curr Pharm Des ; 29(8): 620-629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915987

RESUMO

BACKGROUND: Mitochondria are multifunctional organelles, which participate in biochemical processes. Mitochondria act as primary energy producers and biosynthetic centers of cells, which are involved in oxidative stress responses and cell signaling transduction. Among numerous potential mechanisms of mitochondrial dysfunction, the opening of the mitochondrial permeability transition pore (mPTP) is a major determinant of mitochondrial dysfunction to induce cellular damage or death. A plenty of studies have provided evidence that the abnormal opening of mPTP induces the loss of mitochondrial membrane potential, the impairment calcium homeostasis and the decrease of ATP production. Cyclophilin D (CypD), localized in the mitochondrial transition pore, is a mitochondrial chaperone that has been regarded as a prominent mediator of mPTP. METHODS: This review describes the relationship between CypD, mPTP, and CypD-mPTP inhibitors through systematic investigation of recent relevant literature. RESULTS: Here, we have highlighted that inhibiting the activity of CypD protects models of some diseases, including ischaemia/reperfusion injury (IRI), neurodegenerative disorders and so on. Knockdown studies have demonstrated that CypD possibly is mediated by its peptidyl-prolyl cis-trans isomerase activity, while the primary targets of CypD remain obscure. The target of CypD-mPTP inhibitor can alleviate mPTP opening-induced cell death. The present review is focused on the role of CypD as a prominent mediator of the mPTP, further providing insight into the physiological function of mPTP and its regulation by CypD. CONCLUSION: Blocking the opening of mPTP by inhibiting CypD might be a new promising approach for suppressing cell death, which will suggest novel therapeutic approaches for mitochondria-related diseases.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Peptidil-Prolil Isomerase F , Humanos , Peptidil-Prolil Isomerase F/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
15.
Phytomedicine ; 109: 154621, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610139

RESUMO

BACKGROUND: Tripterygium wilfordii Hook. F (TWHF) is used as a traditional Chinese medicine, called thunder god vine, based on its efficacy for treating inflammatory diseases. However, its hepatotoxicity has limited its clinical application. Triptolide (TP) is the major active and toxic component of TWHF. Previous studies reported that a toxic pretreatment dose of TP leads to hepatic intolerance to exogenous lipopolysaccharide (LPS) stimulation, and to acute liver failure, in mice, but the immune mechanisms of TP-sensitised hepatocytes and the TP-induced excessive immune response to LPS stimulation are unknown. PURPOSE: To identify both the key immune cell population and mechanism involved in TP-induced hepatic intolerance of exogenous LPS. STUDY DESIGN: In vitro and in vivo experiments were conducted to investigate the inhibitory signal of natural killer (NK) cells maintained in hepatocytes, and the ability of TP to impair that signal. METHODS: Flow cytometry was performed to determine NK cell activity and hepatocyte histocompatibility complex (MHC) class I molecules expression; the severity of liver injury was determined based on blood chemistry values, and drug- or cell-mediated hepatocellular damage, by measuring lactate dehydrogenase (LDH) release. In vivo H-2Kb transduction was carried out using an adeno-associated viral vector. RESULTS: Interferon (IFN)-γ-mediated necroptosis occurred in C57BL/6N mice treated with 500 µg TP/kg and 0.1 mg LPS/kg to induce fulminant hepatitis. Primary hepatocytes pretreated with TP were more prone to necroptosis when exposed to recombinant murine IFN-γ. In mice administered TP and LPS, the intracellular IFN-γ levels of NK cells increased significantly. Subsequent study confirmed that NK cells were activated and resulted in potent hepatocellular toxicity. In vivo and in vitro TP administration significantly inhibited MHC class I molecules in murine hepatocytes. An in vitro analysis demonstrated the susceptibility of TP-pretreated hepatocytes to NK-cell-mediated cytotoxicity, an effect that was significantly attenuated by the induction of hepatocyte MHC-I molecules by IFN-α. In vivo induction or overexpression of hepatocyte MHC-I also protected mouse liver against TP and LPS-induced injury. CONCLUSION: The TP-induced inhibition of hepatocyte MHC-I molecules expression leads to hepatic intolerance to exogenous LPS and NK-cell mediated cytotoxicity against self-hepatocytes. These findings shed light on the toxicity of traditional Chinese medicines administered for their immunomodulatory effects.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Fenantrenos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Lipopolissacarídeos , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Diterpenos/farmacologia
16.
Int Immunopharmacol ; 114: 109467, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436471

RESUMO

Macrophage-induced C-type lectin (Mincle), a lipopolysaccharide-induced protein, is widely expressed on antigen-presenting cells. Mincle acts as a pattern recognition receptor that recognizes pathogen-associated molecular patterns of pathogens such as bacteria and fungi, mainly glycolipids, which induces an acquired immune response against microbial infection. Interestingly, Mincle can also identify patterns of lipid damage-associated molecule patterns released by injured cells, such as Sin3-associated protein 130 and ß-glucosylceramides, which induces sterile inflammation and ultimately accelerates the progression of stroke, obesity, hepatitis, kidney injury, autoimmune diseases and tumors by promoting tissue inflammation. This article will review the various functions of Mincle, such as mediating sterile inflammation of tissues to accelerate disease progression, initiating immune responses to fight infection and promoting tumor progression.


Assuntos
Hepatite , Inflamação , Animais , Camundongos , Receptores de Reconhecimento de Padrão , Rim/metabolismo , Glicolipídeos , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL
17.
Cell Signal ; 101: 110508, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341984

RESUMO

AIMS: The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS: Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS: Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE: Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Ácido Glicocólico , Ratos , Camundongos , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação para Cima , Ácido Glicocólico/metabolismo , Proteínas de Sinalização YAP , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo
18.
J Appl Toxicol ; 43(4): 599-614, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36328986

RESUMO

This study was designed to investigate the potential role of farnesoid X receptor (FXR) in abnormal bile acid metabolism and pyroptosis during the pathogenesis of triptolide (TP)/lipopolysaccharide (LPS)-induced hepatotoxicity. Moreover, the protective effect of obeticholic acid (OCA) was explored under this condition. In vivo, female C57BL/6 mice were administrated with OCA (40 mg/kg bw, intragastrical injection) before (500 µg/kg bw, intragastrical injection)/LPS (0.1 mg/kg bw, intraperitoneal injection) administration. In vitro, AML12 cells were treated with TP (50 nM) and TNF-α (50 ng/ml) to induce hepatotoxicity; GW4064 (5 µM) and cholestyramine (CHO) (0.1 mg/ml and 0.05 mg/ml) were introduced to explain the role of FXR/total bile acid (TBA) in it. Serum TBA level was significantly elevated, which was induced by FXR suppression. And both GW4064 and CHO intervention presented remarkable protective effects against TP/TNF-α-induced NLRP3 upregulation and pyroptosis pathway activation. Pre-administration of FXR agonist OCA successfully attenuated TP/LPS-induced severe liver injury by reducing serum bile acids accumulation and inhibiting the activation of caspase-11-GSDMD (gasdermin D) pyroptosis pathway. We have drawn conclusions that TP aggravated liver hypersensitivity to LPS and inhibited FXR-SHP (small heterodimer partner) axis, which was served as endogenous signals to activate caspase-11-GSDMD-mediated pyroptosis contributing to liver injury. OCA alleviated TP/LPS-induced liver injury accompanied by inhibiting caspase-11-GSDMD-mediated pyroptosis pathway and decreased serum TBA level. The results indicated that FXR might be an attractive therapeutic target for TP/LPS-induced hepatotoxicity, providing an effective strategy for drug-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipopolissacarídeos , Animais , Camundongos , Feminino , Lipopolissacarídeos/toxicidade , Piroptose , Caspases , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
19.
Front Pharmacol ; 13: 1032741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467101

RESUMO

Tripterygium wilfordii multiglycoside (GTW), extracted and purified from the peeled roots of T. wilfordii Hook.f. (TwHF), is a well-known traditional Chinese medicine and applied to various autoimmune diseases clinically. However, it has been reported to cause severe liver injury. At present, the mechanism underlying GTW-induced hepatotoxicity remain poorly defined. Here, we evaluated the effects of GTW on mouse liver and elucidated the associated mechanisms via label-free proteomics combined with bioinformatics analysis. Male C57BL/6J mice were randomly divided into normal group, a low-dose GTW (70 mg/kg) group and a high-dose GTW (140 mg/kg) group. After 1-week administration, GTW dose-dependently induced hepatotoxicity. Further analysis showed that GTW could act on the intestinal immune network for IgA production pathway, which plays an important role in maintaining intestinal homeostasis and influences the crosstalk between gut and liver. Western blots confirmed that GTW could decrease pIgR protein expression in the liver and ileum, and, as a result, the secretion of IgA into gut lumen was reduced. Further validation showed that intestinal barrier integrity was impaired in GTW-treated mice, promoting bacteria transferring to the liver and triggering proinflammatory response. Our study demonstrated that gut-liver axis may play a vital part in the progression of GTW-induced hepatotoxicity, which provides guidance for basic research and clinical application of GTW.

20.
Front Nutr ; 9: 1032722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313114

RESUMO

Cholestasis is a common, chronic liver disease that may cause fibrosis and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the Euonymus family that is commonly used as a source of medicine and food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene lactone of TWHF, as well as the main active ingredient in TWHF. Here, we used a mouse model of common bile duct ligation (BDL) cholestasis, along with cultured human intrahepatic biliary epithelial cells, to explore whether TP can relieve cholestasis. Compared with the control treatment, TP at a dose of 70 or 140 µg/kg reduced the serum levels of the liver enzymes alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in mice; hematoxylin and eosin staining also showed that TP reduced necrosis in tissues. Both in vitro and in vivo analyses revealed that TP inhibited cholangiocyte proliferation by reducing the expression of RelB. Immunohistochemical staining of CK19 and Ki67, as well as measurement of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-induced ductular reaction. Masson 3 and Sirius Red staining for hepatic hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis. Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In summary, TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...