Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 859975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663972

RESUMO

A sudden drop in salinity following extreme precipitation events usually causes mass mortality of oysters exposed to pathogens in ocean environment. While how low salinity stress interacts with pathogens to cause mass mortality remains obscure. In this study, we performed an experiment by low salinity stress and pathogen infection with Vibrio alginolyticus to investigate their synergistic effect on the mortality of the Pacific oyster toward understanding of the interaction among environment, host, and pathogen. We showed that low salinity stress did not significantly affect proliferation and virulence of V. alginolyticus, but significantly altered microbial composition and immune response of infected oysters. Microbial community profiling by 16S rRNA amplicon sequencing revealed disrupted homeostasis of digestive bacterial microbiota with the abundance of several pathogenic bacteria being increased, which may affect the pathogenesis in infected oysters. Transcriptome profiling of infected oysters revealed that a large number of genes associated with apoptosis and inflammation were significantly upregulated under low salinity, suggesting that low salinity stress may have triggered immune dysregulation in infected oysters. Our results suggest that host-pathogen interactions are strongly affected by low salinity stress, which is of great significance for assessing future environmental risk of pathogenic diseases, decoding the interaction among environment, host genetics and commensal microbes, and disease surveillance in the oyster.


Assuntos
Crassostrea , Vibrioses , Animais , RNA Ribossômico 16S/genética , Estresse Salino , Alimentos Marinhos
2.
Mol Biol Rep ; 49(8): 8163-8168, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716283

RESUMO

BACKGROUND: The mitochondrial genomes of three species in Solenoidea of Heterodonta have been reported, but the mitochondrial genes and phylogenetic relationships of Cultellus attenuatus, which also belongs to this superfamily and has high economic value, are unknown. METHODS AND RESULTS: The complete mitochondrial genome of C. attenuatus was sequenced and compared with mitogenomes of seven species of Heterodonta bivalve mollusks in GenBank. The mitochondrial genome of C. attenuatus has a length of 16,888 bp and contains 36 genes, including 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. In comparison with C. attenuates, the mitochondrial genes of Sinonovacula constricta from the same family were not rearranged, but those of six other species from different families were rearranged to different degrees. The location, size, and composition of the largest noncoding regions in eight species suggested a closer relationship between C. attenuatus and S. constricta. The phylogenetic analysis showed that C. attenuatus and S. constricta belonging to Cultellidae cluster into one branch and that two species of Solenidae (Solen grandis and Solen strictus) clustered as their sister taxa. CONCLUSIONS: Overall, we used mitochondrial genome data to demonstrate that C. attenuatus and S. constricta exhibit the closest relationship in Heterodonta. These data and analyses provide new insights into the phylogenetic relationships in Heterodonta.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Bivalves/genética , DNA Mitocondrial/genética , Genes Mitocondriais , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA/métodos
3.
PLoS One ; 12(2): e0171483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182701

RESUMO

Hybrid oysters often show heterosis in growth rate, weight, survival and adaptability to extremes of salinity. Oysters have also been used as model organisms to study the evolution of host-defense system. To gain comprehensive knowledge about various physiological processes in hybrid oysters under low salinity stress, we performed transcriptomic analysis of gill tissue of Crassostrea sikamea ♀ × Crassostrea angulata♂ hybrid using the deep-sequencing platform Illumina HiSeq. We exploited the high-throughput technique to delineate differentially expressed genes (DEGs) in oysters maintained in hypotonic conditions. A total of 199,391 high quality unigenes, with average length of 644 bp, were generated. Of these 35 and 31 genes showed up- and down-regulation, respectively. Functional categorization and pathway analysis of these DEGs revealed enrichment for immune mechanism, apoptosis, energy metabolism and osmoregulation under low salinity stress. The expression patterns of 41 DEGs in hybrids and their parental species were further analyzed by quantitative real-time PCR (qRT-PCR). This study will serve as a platform for subsequent gene expression analysis regarding environmental stress. Our findings will also provide valuable information about gene expression to better understand the immune mechanism, apoptosis, energy metabolism and osmoregulation in hybrid oysters under low salinity stress.


Assuntos
Crassostrea/genética , Hibridização Genética , Pressão Osmótica , Salinidade , Transcriptoma , Animais , Apoptose , Crassostrea/metabolismo , Osmorregulação
4.
Sci Rep ; 6: 33367, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640675

RESUMO

This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Moluscos/classificação , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Geografia , Moluscos/genética , Oceano Pacífico , Filogenia , Especificidade da Espécie
5.
Dongwuxue Yanjiu ; 31(4): 345-52, 2010 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-20740694

RESUMO

DNA barcoding has exhibited charming effectiveness in species diagnosis, but some studies suggested the proportion of taxa that cannot be barcode-distinguished was still high. In the present study, the efficiency of the DNA barcoding for delimiting species of subfamily Tapetinae along the coast of China was tested. Fifty one original COI sequences of 11 species in five genera were analyzed. Among these sequences, 43 haplotypes were identified. Saturation plots generated for DNA barcode revealed that transitions became saturated after 10% to 15% sequence divergence. However, transversions were not saturated. Excluding Ruditapes variegata haplotype Hap33 that might be the result of a hybridization event, our finding showed that K2P-distances between conspecific sequences varied from 0% to 2.02% (0.46% on average), distances between congeneric sequences were from 17.21% to 32.24% (24.96% on average), and all conspecifics clustered together in the phylogentic trees. The proportion of individuals that can be distinguished by DNA barcoding was approximately 98% among 51 individuals analyzed in this study. Thus, the results evidenced that subfamily Tapetinae species can be efficiently identified through the use of DNA barcoding.


Assuntos
Bivalves/genética , Código de Barras de DNA Taxonômico , Análise de Sequência de DNA/métodos , Animais , Bivalves/classificação , China , Haplótipos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...