Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126415, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878513

RESUMO

Endothelial cells (ECs) migration is a crucial early step in vascular repair and tissue neovascularization. While extensive research has elucidated the biochemical drivers of endothelial motility, the impact of biophysical cues, including vessel geometry and topography, remains unclear. Herein, we present a novel approach to reconstruct 3D self-assembly blood vessels-on-a-chip that accurately replicates real vessel geometry and topography, surpassing conventional 2D flat tube formation models. This vessels-on-a-chip system enables real-time monitoring of vasculogenesis and ECs migration at high spatiotemporal resolution. Our findings reveal that ECs exhibit increased migration speed and directionality in response to narrower vessel geometries, transitioning from a rounded to a polarized morphology. These observations underscore the critical influence of vessel size in regulating ECs migration and morphology. Overall, our study highlights the importance of biophysical factors in shaping ECs behavior, emphasizing the need to consider such factors in future studies of endothelial function and vessel biology.

2.
ACS Appl Mater Interfaces ; 16(5): 5401-5411, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271201

RESUMO

Nanostructure-enhanced biodetection is widely used for early diagnosis and treatment, which plays an essential role in improving the cure rates of cancer patients. ZnO nanostructure-based fluorescence immunoassay has been demonstrated to enable effective and sensitive detection of cancer biomarkers for their excellent biocompatibility, high electrical point, and unique fluorescence enhancement properties. Further optimization of such fluorescence detection technology is still in demand to meet the requirements of highly sensitive, multiplex detection, and user-friendly devices. Droplet microfluidics is a promising platform for high-throughput analysis of biological assays, and they have been intensively used in analytical chemistry and synthesis of nanoparticles. Here, we propose a simple droplet chip, where a static droplet array was successfully obtained for in situ growth of ZnO nanostructures with varied diameters by changing the entire growth time and replenishment interval. This device provides a novel and alternative approach for patterned growth of ZnO nanostructures and understanding the growth condition of ZnO nanostructures in static droplet, which offers some guidance toward the design of multiple fluorescence amplification platforms potentially for biosensing. As a demonstration, we used the patterned grown ZnO nanostructures for multiple detection of cancer biomarkers, achieving a low limit of detection as low as 138 fg/mL in the human α-fetoprotein assay and 218 fg/mL in the carcinoembryonic antigen assay with a large dynamic range of 8 orders. These results suggest that such multifunctional microfluidic devices may be useful tools for efficient fluorescence diagnostic assays.


Assuntos
Técnicas Analíticas Microfluídicas , Nanopartículas , Nanoestruturas , Óxido de Zinco , Humanos , Microfluídica/métodos , Óxido de Zinco/química , Nanoestruturas/química , Biomarcadores Tumorais
3.
iScience ; 26(12): 108575, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125027

RESUMO

The tumor-treating fields (TTFields) technology has revolutionized the management of recurrent and newly diagnosed glioblastoma (GBM) cases. To ameliorate this treatment modality for GBM and other oncological conditions, it is necessary to understand the biophysical principles of TTFields better. In this study, we further analyzed the mechanism of the electromagnetic exposure with varying frequencies and electric field strengths on cells in mitosis, specifically in telophase. In reference to previous studies, an intuitive finite element model of the mitotic cell was built for electromagnetic simulations, predicting a local increase in the cleavage furrow region, which may help explain TTFields' anti-proliferative effects. Cell experiments confirmed that the reduction in proliferation and migration of glioma cell by TTFields was in a frequency- and field-strength-dependent manner. This work provides unique insights into the selection of frequencies in the anti-proliferative effect of TTFields on tumors, which could improve the application of TTFields.

4.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
5.
Anal Chem ; 95(4): 2366-2374, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36655581

RESUMO

Before fertilization, sperms adhere to oviductal epithelium cells, and only a restrictive number of winner sperms can escape to reach the egg. To study the sperm escape behavior from the oviductal surface, we developed a microfluidic chip to fabricate an adhesive surface and to create a gradient of progesterone (P4) for mimicking the oviduct microenvironment in vivo. We identified three sperm motion patterns in such a microenvironment─anchored spin, run-and-spin, and escaped mode. By using kinetic analysis, we verified the hypothesis that the responsive rotation energy anchored with the adhered sperm head determines whether the sperm is trapped or detaching, which is defined as the hammer flying strategy of successful escape after accumulating energy in the process of rotating. Intriguingly, this hammer-throw escaping is able to be triggered by the P4 biochemical stimulation. Our results revealed the tangled process of sperm escape before fertilization in the ingenious microfluidic system.


Assuntos
Biomimética , Sêmen , Humanos , Feminino , Masculino , Animais , Cinética , Espermatozoides , Oviductos
6.
Biosens Bioelectron ; 217: 114709, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115123

RESUMO

Osteosarcoma is one of the most frequent primary sarcoma of bone among adolescents. Early diagnosis of osteosarcoma is the key factor to achieve high survival rate of patients. Nevertheless, traditional histological biopsy is highly invasive and associated with the risk of arousing tumor spread. Herein, we develop a method integrating microfluidics and surface-enhanced Raman spectroscopy (SERS) to isolate plasma-derived exosomes and profile multiple exosomal biomarkers for the diagnosis of osteosarcoma. The method showed highly efficient isolation of exosomes directly from human plasma and can profile exosomes based on protein biomarkers, with the detection limit down to 2 exosomes per µL. The whole assay can be performed in 5 h and only consumed 50 µL of plasma for one analysis. With the method, we analyzed the level of three protein biomarkers, i.e., CD63, vimentin (VIM) and epithelial cell adhesion molecule (EpCAM), on plasma-derived exosomes from 20 osteosarcoma patients and 20 heathy controls. Significantly higher levels of CD63, VIM and EpCAM were observed on plasma exosomes from the osteosarcoma patients compared to the healthy controls. Based on the level of the exosomal biomarkers, a classification model was built for the rapid diagnosis of osteosarcoma, with the sensitivity, specificity and accuracy of 100%, 90% and 95%, respectively. The proposed method does not require complex operations nor expensive equipment, and has great promise in clinical diagnosis of cancer as a liquid biopsy technique.


Assuntos
Técnicas Biossensoriais , Neoplasias Ósseas , Exossomos , Osteossarcoma , Adolescente , Biomarcadores Tumorais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo , Molécula de Adesão da Célula Epitelial/análise , Exossomos/química , Humanos , Microfluídica/métodos , Osteossarcoma/diagnóstico , Osteossarcoma/metabolismo , Vimentina/análise , Vimentina/metabolismo
7.
Biosens Bioelectron ; 204: 114040, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151944

RESUMO

As the gate for sperm swimming into the female reproductive tract, cervix is full of cervical mucus, which plays an important role in sperm locomotion. The fact that sperm cannot pass through the cervical mucus-cervix microenvironment will cause the male infertility. However, how the sperm swim across the cervix microenvironment remains elusive. We used hyaluronic acid (HA), a substitute of cervical mucus to mimic cervix microenvironment and designed a cervix chip to study sperm selection and behavior. An accumulation of sperm in HA confirmed that HA served as a reservoir for sperm, similar to cervical mucus. We found that sperm escaping from HA exhibited higher motility than the sperm accessing into HA, suggesting that HA functions as a filter to select sperm with high activity. Our findings construct a practical platform to explore the sophisticated interaction of sperm with cervix microenvironment, with elaborate swimming indicators thus provide a promising cervix chip for sperm selection with kinematic features on-demand. What's more, the cervix chip allows the convenient use in clinical infertility diagnosis, owing to the advantage of simple, fast and high efficiency.


Assuntos
Técnicas Biossensoriais , Motilidade dos Espermatozoides , Muco do Colo Uterino , Colo do Útero , Feminino , Humanos , Locomoção , Masculino , Espermatozoides
8.
Front Oncol ; 11: 709255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527582

RESUMO

Plasma circulating extracellular vesicle (EV) has emerged as a promising biomarker for diagnosis and prognosis of various epithelial tumors. However, fast and efficient capture of EVs with microfluidic chip in sarcoma remains to be established. Herein, we reported a ZnO-nanorods integrated (ZNI) microfluidic chip, where EV capture antibody was uniformly grafted to the surface of the ZnO-nanorods of the chip to enhance the plasma turbulence formation and the capture efficiency at the micro-scale. Based on osteosarcoma (OS) cell line, we demonstrated that a combination of CD81 and CD63 antibody on ZNI chip yielded the greatest amount of total EVs, with an extra sensitive limit of detection (LOD) of ~104 particles mL-1. Furthermore, the addition of fluorescent labeling of Vimentin (VIM), a previously reported sarcoma cell surface biomarker, could enabled the dual visualization of total plasma EVs and VIM-positive EVs from OS patients' plasma. Based on our ZNI chip, we found that the amount of plasma total EVs was significantly different between OS and healthy donors (1562 a.u. versus 639 a.u., p< 0.05), but not between metastatic and nonmetastatic OS (p> 0.05). Interestingly, patients with metastatic disease had a significantly greater amount of VIM-positive EVs (1411 a.u. versus 231 a.u.., p< 0.05) and increased VIM-positive/total EVs ratio (0.943 versus 0.211, p< 0.05) in comparison with the nonmetastatic counterpart. Therefore, our ZNI microfluidic chip has great potential for the fast quantification of plasma EVs, and the microfluidic-based quantification of total and VIM-positive EVs might serve as a promising biomarker for the diagnosis and surveillance in OS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...