Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SSM Popul Health ; 25: 101585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38283548

RESUMO

BACKGROUNDDue to the long time interval between exposure and outcome, it is difficult to infer the causal relationship between educational attainment (EA) and common chronic diseases. Therefore, we utilized Mendelian randomization (MR) to predict the causal relationships of EA with hypertension and type-2 diabetes (T2DM). METHODSA two-sample MR analysis was conducted using genome-wide association studies (GWASs) combined with inferential measurements. A GWAS meta-analysis including 1,131,881 European individuals was used to identify instruments for EA. Hypertension and T2DM data were obtained from a Finnish database. MR analyses were performed using inverse-variance weighted meta-analysis (IVW), weighted median regression, MR‒Egger regression, simple mode regression, weighted mode regression and the MR-Pleiotropy RESidual Sum and Outlier test. Sensitivity analyses were further performed using the leave-one-out method to test the robustness of our findings. RESULTSUsing the MR approach, our results showed that EA was significantly associated with a reduced risk of hypertension (OR = 0.63; P = 2.94 × 10-47; [95% CI: 0.59, 0.67]) and type-2 diabetes (OR = 0.59; P = 1.25 × 10-16; [95% CI: 0.52, 0.67]). CONCLUSIONSThis study showed that EA is causally linked to the risk of chronic diseases, including high blood pressure and T2DM.

2.
Urolithiasis ; 50(5): 545-556, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35913552

RESUMO

Calcium oxalate (CaOx) crystals can activate autophagy, causing damage to renal tubular epithelial cells (TECs). Puerarin has been shown to have protective and therapeutic effects against a variety of diseases by inhibiting autophagy activation. However, the protective effect of puerarin against CaOx crystals and the underlying molecular mechanisms are unclear. Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effects of puerarin on cell viability. Intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Immunofluorescence, immunohistochemistry, and western blotting were used to examine the expression of SIRT1, Beclin1, p62, and LC3, and explore the underlying molecular mechanisms in vivo and in vitro. Puerarin treatment significantly attenuated CaOx crystal-induced autophagy of TECs and CaOx cytotoxicity to TECs by altering SIRT1 expression in vitro and in vivo, whereas the SIRT1-specific inhibitor EX527 exerted contrasting effects. In addition, we found that the protective effect of puerarin was related to the SIRT1/AKT/p38 signaling pathway. The findings suggest that puerarin regulates CaOx crystal-induced autophagy by activating the SIRT1-mediated signaling pathway, and they suggest a series of potential therapeutic targets and strategies for treating nephrolithiasis.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Autofagia , Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoflavonas , Cálculos Renais/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia
3.
Oxid Med Cell Longev ; 2019: 4826525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781338

RESUMO

Peroxisome proliferator-activated receptor- (PPAR-) γ is a ligand-dependent transcription factor, and it has become evident that PPAR-γ agonists have renoprotective effects, but their influence and mechanism during the development of calcium oxalate (CaOx) nephrolithiasis remain unknown. Rosiglitazone (RSG) was used as a representative PPAR-γ agonist in our experiments. The expression of transforming growth factor-ß1 (TGF-ß1), hepatocyte growth factor (HGF), c-Met, p-Met, PPAR-γ, p-PPAR-γ (Ser112), Smad2, Smad3, pSmad2/3, and Smad7 was examined in oxalate-treated Madin-Darby canine kidney (MDCK) cells and a stone-forming rat model. A CCK-8 assay was used to evaluate the effects of RSG on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were monitored, and lipid peroxidation in renal tissue was detected according to superoxide dismutase and malondialdehyde levels. Moreover, the location and extent of CaOx crystal deposition were evaluated by Pizzolato staining. Our results showed that, both in vitro and in vivo, oxalate impaired PPAR-γ expression and phosphorylation, and then accumulative ROS production was observed, accompanied by enhanced TGF-ß1 and reduced HGF. These phenomena could be reversed by the addition of RSG. RSG also promoted cell viability and proliferation and decreased oxidative stress damage and CaOx crystal deposition. However, these protective effects of RSG were abrogated by the PPAR-γ-specific inhibitor GW9662. Our results revealed that the reduction of PPAR-γ activity played a critical role in oxalate-induced ROS damage and CaOx stone formation. RSG can regulate TGF-ß1 and HGF/c-Met through PPAR-γ to exert antioxidant effects against hyperoxaluria and alleviate crystal deposition. Therefore, PPAR-γ agonists may be expected to be a novel therapy for nephrolithiasis, and this effect is related to PPAR-γ-dependent suppression of oxidative stress.


Assuntos
Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/biossíntese , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Rosiglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Cães , Células Epiteliais/patologia , Hiperoxalúria/tratamento farmacológico , Hiperoxalúria/metabolismo , Hiperoxalúria/patologia , Rim/patologia , Células Madin Darby de Rim Canino , Masculino , Nefrolitíase/tratamento farmacológico , Nefrolitíase/metabolismo , Nefrolitíase/patologia , Ratos Sprague-Dawley
4.
Int Urol Nephrol ; 48(2): 175-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26560472

RESUMO

OBJECTIVES: We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. METHODS: Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. RESULTS: Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. CONCLUSIONS: To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica , Nefrolitíase/genética , Oxalatos/efeitos adversos , Fosfatidilserinas/metabolismo , RNA Mensageiro/genética , Urotélio/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Ciclosporinas/farmacologia , Cães , Resistência a Múltiplos Medicamentos , Citometria de Fluxo , Humanos , Nefrolitíase/tratamento farmacológico , Nefrolitíase/metabolismo , Fosfatidilserinas/antagonistas & inibidores , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Urotélio/efeitos dos fármacos , Urotélio/patologia
5.
J Urol ; 186(3): 1114-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21784463

RESUMO

PURPOSE: We evaluated the possible involvement of phospholipid transporters and reactive oxygen species in the oxalate induced redistribution of renal epithelial cell phosphatidylserine. MATERIALS AND METHODS: Madin-Darby canine kidney cells were labeled with the fluorescent phospholipid NBD-PS in the inner or outer leaflet of the plasma membrane and then exposed to oxalate in the presence or absence of antioxidant. This probe was tracked using a fluorescent quenching assay to assess the bidirectional transmembrane movement of phosphatidylserine. Surface expressed phosphatidylserine was detected by annexin V binding assay. The cell permeable fluorogenic probe DCFH-DA was used to measure the intracellular reactive oxygen species level. RESULTS: Oxalate produced a time and concentration dependent increase in phosphatidylserine, which may have resulted from impaired aminophospholipid translocase mediated, inward directed phosphatidylserine transport and from enhanced phosphatidylserine outward transport. Adding the antioxidant N-acetyl-L-cysteine significantly attenuated phosphatidylserine externalization by effectively rescuing aminophospholipid translocase activity. CONCLUSIONS: To our knowledge our findings are the first to show that oxalate induced increased reactive oxygen species generation impairs aminophospholipid translocase activity and decreased aminophospholipid translocase activity has a role in hyperoxaluria promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.


Assuntos
Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Rim/citologia , Estresse Oxidativo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Urolitíase/etiologia , Animais , Células Cultivadas , Cães
6.
Tumour Biol ; 32(1): 179-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20857258

RESUMO

Arsenic trioxide has shown remarkable biological activity against bladder cancer in some clinical studies. However, the mechanism of its action is unknown. Our aim was to find the relationship between miRNAs and arsenic trioxide treatment by using T24 human bladder carcinoma cells. By performing microRNA microarray and quantitative real-time PCR after ATO treatment, we found that expression levels of several miRNAs, in particular, miRNA-19a, were significantly decreased in T24 cell line. Furthermore, cell proliferation assay, flow cytometry analysis, prediction of miRNA targets, Western blot analysis, and luciferase reporter assay were performed to determine the role of mir-19a in affecting the biological behaviors of T24 cells. Several miRNAs were up-regulated or down-regulated in T24 cells treated with arsenic trioxide compared to their controls. If only changes above two folds were considered, two miRNAs were identified, miRNA-19a was down-regulated, while miRNA-222* was up-regulated. Among them, knockdown of miRNA-19a by anti-miRNA-19a transfection showed a positive therapeutic effect in bladder cancer cells by inhibiting cell growth and inducing cell apoptosis targeting PTEN through the PTEN/Akt pathway. Besides this, a synergy effect was detected between knockdown of miRNA-19a and arsenic trioxide. Arsenic trioxide altered miRNA expression profile in T24 cells. It seems miRNA-19a plays a critical role in the mechanism of arsenic trioxide treatment in bladder cancer. The synergy effect between miRNA-19a and arsenic trioxide that advocates targeting the mir-19a may represent a potential approach to enhance the efficacy and safety of ATO to treat bladder cancer by a decrease in dose.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/fisiologia , Óxidos/farmacologia , PTEN Fosfo-Hidrolase/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Luciferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...