Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 133: 104649, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870891

RESUMO

Presbycusis results from age-related degeneration of the auditory system. D-galactose (D-gal)-induced aging is an ideal and commonly used animal model in aging research. Previous studies demonstrate that administration of D-gal can activate mitochondria-dependent apoptosis in the cochlear stria vascularis. However, D-gal-induced changes to cochlear inner (IHCs) and outer (OHCs) hair cells, spiral ganglion cells (SGCs), and ribbon synapses connecting IHCs and SGCs have not been systematically reported. The current study investigated changes in the numbers of hair cells, SGCs, and ribbon synapses in the mouse model of aging. We found that in comparison to control mice, the numbers of ribbon synapses and their nerve fibers were significantly decreased in D-gal-treated mice, whereas the numbers of OHCs, IHCs, and SGCs were almost unchanged. Moreover, hair cell stereocilia were also not obviously influenced by D-gal administration. Although D-gal-induced aging did not significantly shift the auditory brainstem response (ABR) thresholds in the 8, 16, and 32 kHz frequency bands, the amplitude and latency of the ABR wave I, reflecting ribbon synapse functions, were abnormal in D-gal-treated mice compared to control mice. We also found that 8-hydroxy-2-deoxyguanosine, a marker of oxidative DNA damage, was significantly increased in mitochondria of cochleae from mice exposed to D-gal-induced aging in comparison to control mice. Moreover, D-gal administration increased the levels of H2O2 and mitochondrial 3860-bp common deletion, and decreased superoxide dismutase activity and ATP production in the cochlea. Furthermore, compared with control mice, the protein levels of NADPH oxidase 2 and uncoupling protein 2 were significantly increased in the cochlea of D-gal-treated mice. Taken together, these findings support that the cochlear ribbon synapse is the primary insult site in the early stage of presbycusis, and mitochondrial oxidative damage and subsequent dysfunctions might be responsible for this insult.


Assuntos
Envelhecimento/metabolismo , Cóclea/fisiopatologia , Galactose/farmacologia , Sinapses/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sinapses/efeitos dos fármacos
2.
J Vis Exp ; (147)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132058

RESUMO

Cochlear inner hair cells (IHCs) transmit acoustic signals to spiral ganglion neurons (SGNs) through ribbon synapses. Several experimental studies have indicated that hair cell synapses may be the initial targets in sensorineural hearing loss (SNHL). Such studies have proposed the concept of cochlear "synaptopathy", which refers to alterations in ribbon synapse number, structure, or function that result in abnormal synaptic transmission between IHCs and SGNs. While cochlear synaptopathy is irreversible, it does not affect the hearing threshold. In noise-induced experimental models, restricted damage to IHC synapses in select frequency regions is employed to identify the environmental factors that specifically cause synaptopathy, as well as the physiological consequences of disturbing this inner ear circuit. Here, we present a protocol for analyzing cochlear synaptic morphology and function at a specific frequency region in adult mice. In this protocol, cochlear localization of specific frequency regions is performed using place-frequency maps in conjunction with cochleogram data, following which the morphological characteristics of ribbon synapses are evaluated via synaptic immunostaining. The functional status of ribbon synapses is then determined based on the amplitudes of auditory brainstem response (ABR) wave I. The present report demonstrates that this approach can be used to deepen our understanding of the pathogenesis and mechanisms of synaptic dysfunction in the cochlea, which may aid in the development of novel therapeutic interventions.


Assuntos
Cóclea/anatomia & histologia , Cóclea/fisiologia , Sinapses/fisiologia , Animais , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Masculino , Camundongos Endogâmicos C57BL
3.
Neurosci Lett ; 660: 140-146, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28928030

RESUMO

Noise-induced hearing loss (NIHL) severely impacts the quality of life of affected individuals. Oxidative stress resulting from noise exposure is a significant cause of NIHL. Although histone deacetylase (HDAC) inhibitors were shown to protect against NIHL, the underlying mechanism remains unclear, and it is not known how they act on noise-induced oxidative stress. In the current study, we investigated the expression levels of acetyl-histone H3 (Lys9) (H3-AcK9), histone deacetylase 1 (HDAC1), and 3-nitrotyrosine (3-NT), an oxidative stress marker, in a guinea pig model of NIHL using immunohistology and Western blotting. We then assessed the effects of systemic administration of the HDAC inhibitor, sodium butyrate (SB), on noise-induced permanent threshold shifts (PTS), hair cell (HC) loss, and changes in the above mentioned markers. The results showed that SB attenuated noise-induced PTS and outer hair cell loss. SB treatment promoted H3-AcK9 expression and repressed HDAC1 expression in the nuclei of HCs and Hensen's cells after noise exposure. Furthermore, SB attenuated the noise-induced increase of 3-NT expression in HCs and Hensen's cells. These findings suggest that SB protects against NIHL by reversing the noise-induced histone acetylation imbalance and inhibiting oxidative stress in cochlear HCs and Hensen's cells. SB treatment may represent a potential strategy to prevent and treat NIHL.


Assuntos
Ácido Butírico/administração & dosagem , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Cobaias , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Masculino , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...