Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(8): 1225-1231, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38314827

RESUMO

A highly sensitive fluorescent aptasensor for carcinoembryonic antigen (CEA) was developed by employing upconversion nanoparticles (UCNPs) as an energy donor and WS2 nanosheets as an energy acceptor, respectively. Polyacrylic acid (PAA) modified NaYF4:Yb/Er UCNPs and an amine modified CEA aptamer were linked together by a covalent bond. Owing to the physical adsorption between WS2 nanosheets and the CEA aptamer, the UCNPs-aptamer was close to WS2 nanosheets, resulting in upconversion fluorescence energy transfer from UCNPs to WS2 nanosheets, and the UCNP fluorescence was quenched. With the introduction of CEA into the UCNPs-aptamer complex system, the aptamer preferentially bound to CEA resulting in a change in spatial conformation which caused UCNPs to depart from WS2 nanosheets. As a result, the energy transfer was inhibited and the fluorescence of UCNPs was observed again, and the degree of fluorescence recovery was linearly related to the concentration of CEA in a range of 0.05-10 ng mL-1 with a limit of detection of 0.008 ng mL-1. Furthermore, the aptasensor based on UCNPs and WS2 nanosheets could be competent for detecting CEA in human serum, which suggests the great application potential of the proposed aptasensor in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Humanos , Antígeno Carcinoembrionário/química , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência/métodos
2.
Materials (Basel) ; 13(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963432

RESUMO

Polymer additives and surfactants as drag reduction agents have been widely used in the field of fluid drag reduction. Polymer additives can reduce drag effectively with only a small amount, but they degrade easily. Surfactants have an anti-degradation ability. This paper categorizes the mechanism of drag reducing agents and the influencing factors of drag reduction characteristics. The factors affecting the degradation of polymer additives and the anti-degradation properties of surfactants are discussed. A mixture of polymer additive and surfactant has the characteristics of high shear resistance, a lower critical micelle concentration (CMC), and a good drag reduction effect at higher Reynolds numbers. Therefore, this paper focuses more on a drag reducing agent mixed with a polymer and a surfactant, including the mechanism model, drag reduction characteristics, and anti-degradation ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...