Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(24): 34922-34935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713355

RESUMO

Metal(loid)s pose a significant hazard due to inherent toxicity. Individuals are particularly exposed to metal(loid)s in soil through direct or indirect contact. Identifying metal(loid) sources in soil is required for exposure mitigation to anthropogenic metal(loid)s, while metal(loid)s are natural constitutes of soil. Metal(loid) concentrations and Pb isotopes were determined in residential soil profiles impacted by a Zn smelter to distinguish the anthropogenic effect from natural levels. One hundred sixty-nine core soil samples were collected from depths down to 5.5 m below ground level at 19 sites and were divided into Zn-Cd-As- and As-contaminated groups based on the worrisome level (WL) of soil contamination. The Zn-Cd-As-contaminated group (n = 62) was observed at depths < 1 m, showed high Zn levels (mean of 1168 mg/kg) and Cd and As frequently exceeding WLs, and had low 206Pb/207Pb ratios close to the Zn smelter. In contrast, the As-contaminated group (n = 96) was observed at depths > 1 m, did not have other metals exceeding WLs, and showed a wide range of 206Pb/207Pb ratios far away from the Zn smelter. The results indicated that the pollution sources of Zn-Cd-As- and As-contaminated soils were fugitive dust emissions from smelter stacks and geology, respectively. The metal(loid)s in host rock set geochemical baselines in soil profiles, while smelting activities affected the upper layers over 50 years. This study demonstrated the effectiveness of utilizing the vertical distribution of metal(loid) concentrations and Pb isotopes in soil profiles for distinguishing between anthropogenic and geogenic origins, in combination with baseline assessment.


Assuntos
Monitoramento Ambiental , Poluentes do Solo , Solo , Zinco , Poluentes do Solo/análise , Zinco/análise , Solo/química , República da Coreia , Metais/análise , Metalurgia
2.
Environ Geochem Health ; 46(1): 15, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147160

RESUMO

Soil contamination by potentially toxic elements (PTEs), such as metal(loid)s, in mining areas was characterized on a nationwide scale in Mongolia to understand the contamination status throughout the country, according to mine types. Positive matrix factorization (PMF) analysis exhibited better classification and explanation of soil contamination according to ore types compared to conventional statistical analysis methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The results of PMF analysis for metal(loid) contents in 1425 topsoil samples collected from 272 mines illuminated four Factors, which primarily contributed to As (Factor 1), Pb, Zn, and Cd (Factor 2), Ni (Factor 3), and Cu and Cd (Factor 4) contaminations, respectively. In hard-rock gold mines, As was enriched and the contribution of Factor 1 was high (31.2%) due to the affinity between As and Au. In placer gold mines, the contribution of Factor 3 (41.8%) was high due to the affinity between Ni and weathering-resistant heavy minerals. For base metal, fluorite, and coal mines, contributions of Factors 2 (32.1-50.9%) and 4 (17.7-33.6%) were high owing to sulfides containing Pb-Zn-d and Cu. These impacts of mine types were altered by local geology (e.g., skarn). Meanwhile, Hg amalgamation contributed to Hg contamination in a few hard-rock gold mines. These results suggest that soil contaminants in mining areas are mainly affected by the type of deposits with geochemical affinities, region-specific ore characteristics, and artificial processing. Understanding these effects will help establish national strategies for countermeasures, such as soil rehabilitation in mining areas.


Assuntos
Cádmio , Mercúrio , Poluentes do Solo , Ouro , Chumbo , Mongólia , Solo , Mineração
3.
J Hazard Mater ; 458: 131901, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356179

RESUMO

Fractionation behaviors of Cu and Zn isotopes have been increasingly studied at the field scale, but those in various redox conditions of groundwater contaminated with petroleum and treated by oxidation have not been assessed. In this study, δ65Cu and δ66Zn as well as δ34SSO4 and Δδ18OSO4-H2O were assessed in wells undergoing contamination by total petroleum hydrocarbons (TPH) and oxidation using H2O2 in 2021 and 2022. High δ34SSO4 and relevant parameters (e.g., dissolved sulfide and HCO3-) indicated the occurrence of sulfate reduction. The plot of δ65Cu versus δ34SSO4 effectively indicated precipitation of Cu sulfides and their reoxidation at oxidation wells. Although the plot of δ66Zn versus δ34SSO4 could also indicate reoxidation of Zn sulfides, the Zn isotopic fingerprint of sulfide precipitation may have been masked by fractionation by sorption. The advantage of using δ65Cu in the redox reactions resulted from the wider range of δ65Cu owing to the redox behavior of Cu. The plot combining isotopic fractionations of Cu and S can assist in assessing sulfide precipitation and oxidative treatment in TPH-contaminated groundwater.

4.
J Hazard Mater ; 457: 131712, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257376

RESUMO

The evaluation of leachate leakage at livestock mortality burial sites is challenging, particularly when groundwater is previously contaminated by agro-livestock farming. Supervised machine learning was applied to discriminate the impacts of carcass leachate from pervasive groundwater contamination in the following order: data labeling, feature selection, synthetic data generation, and classification. Physicochemical data of 359 water samples were collected from burial pits (LC), monitoring wells near pits (MW), pre-existing shallow household wells (HW), and background wells with pervasive contamination (BG). A linear classification model was built using two representative groups (LC and BG) affected by different pollution sources as labeled data. A classifier was then applied to assess the impact of leachate leakage in MW and HW. As a result, leachate impacts were observed in 40% of MW samples, which indicates improper construction and management of some burial pits. Leachate impacts were also detected in six HW samples, up to 120 m downgradient, within one year. The quantitative decision-making tool to diagnose groundwater contamination with leachate leakage can contribute to ensuring timely responses to leakage. The proposed machine learning approach can also be used to improve the environmental impact assessment of water pollution by improper disposal of organic waste.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Gado , Fazendas , Poluentes Químicos da Água/análise , Sepultamento , Aprendizado de Máquina Supervisionado
5.
J Hazard Mater ; 443(Pt B): 130294, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335902

RESUMO

Tailings were discharged to the Boroo River from gold mining by amalgamation, resulting in soil contamination near the river. To identify the sources and distribution mechanisms of each metal(loid) in the soil, a total of 184 soil samples were collected near the river and analyzed for As, Cd, Cu, Pb, Zn, and Hg contents. According to the positive matrix factorization result, three factors affected the contamination levels: the application of Hg for gold mining (Factor 1), light minerals containing Cu and Zn (Factor 2), and heavy minerals containing As and Cd (Factor 3). Soil samples were classified into four groups by hierarchical clustering. Groups A and B seemed to be affected by light and heavy minerals discharged in early and later stages of ore processing, respectively. The spatial distribution of the groups suggested differentiation in travel distances by specific gravity. Groups C and D showed high Hg contents implying the effect of Hg mismanagement and spill accidents. The study results show that the distribution of soil contaminants near rivers in mining areas is controlled by the specific gravity of minerals discharged to the environment (e.g., river), ore processing stages, and insufficient recovery and/or spills of Hg, which will help establish restoration measures.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Ouro , Monitoramento Ambiental/métodos , Cádmio , Mongólia , Mercúrio/análise , China , Medição de Risco
6.
Water Res ; 191: 116814, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461081

RESUMO

Time lags between anthropogenic nitrogen inputs and their impacts to nitrate levels cause a misunderstanding for sources and subsequently misguide the groundwater management.We investigated the hydrochemical data of groundwater samples (n = 172 from 49 wells) with chlorofluorocarbons (CFCs)-based groundwater age dating and stable N (δ15N) and O isotopes (δ18O) of nitrate to assess the legacy effect of livestock farming to groundwater in an agricultural area where intensive livestock farming started in the 1970s and illegal dumping of manure wastewater in a lava cave was revealed in 2015. Approximately 90% of the groundwater samples had nitrate concentrations exceeding the natural threshold (5.5 mg/L NO3-) for nitrate contamination and 34% exceeded the World Health Organization's guideline for drinking water quality (44.3 mg/L), indicating severe nitrate contamination. The δ15NNO3 values (5.5 to 24.3‰) in groundwater exceeding the threshold of nitrate showed that livestock manure was a major nitrate source, while ammonium fertilizer also seemed influential given the δ15NNO3 values in the overlapping fields of N sources. Factor analysis of hydrochemical data also supported nitrate contamination by manure as well as by plant farming in the study area. Based on the spatial distribution of nitrate levels and δ15NNO3, livestock farming affected nitrate contamination by illegal manure dumping in the leakage cave. According to a Bayesian mixing model, the contribution of manure wastewater was 33.5 to 81.8% as of 2015-2018, with the rest from fertilizers. Meanwhile, the groundwater ages showed negative correlations with both nitrate levels (r = -0.90) and δ15NNO3 values (r = -0.74) on a log scale, consistent with the increasing N release from livestock farming since the 1960s. In particular, the median value of δ15NNO3 rapidly increased to 9.2‰ in groundwater recharged between the late 1970s and early 1990s when N production exponentially increased, implying a significant effect of livestock farming after the 1980s. Groundwater quality is expected to deteriorate over the next several decades based on the groundwater ages (> 23.5 years), the increased N production from livestock farming, and the legacy effect of N. Long-term groundwater management plans (> 25 years) are required to decrease N loads in the study area, because it takes time for management practices to take effect. The study results are a good reference for groundwater management in regions with a source shift to livestock farming under intensive livestock production systems. Moreover, the chronological study using historical N production, groundwater age data, and dual nitrate isotopes can be applied to other regions with multiple N sources and their shifting for identifying sources and estimating time lags.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Animais , Teorema de Bayes , Monitoramento Ambiental , Gado , Nitratos/análise , Isótopos de Nitrogênio/análise , República da Coreia , Água , Poluentes Químicos da Água/análise , Abastecimento de Água
7.
Sci Total Environ ; 757: 143884, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33321339

RESUMO

The mobility of Zn, Cd, Pb, Cu, and As was assessed in an atmospheric environment and soil system near a Zn smelter by performing sequential extraction as well as Pb isotopic and mineralogical analyses for fugitive and roof dusts and agricultural soils. Transmission electron microscopy observations with selected area electron diffraction patterns confirmed that micron-sized roof dusts originated from the Zn smelter. Both fugitive and roof dusts contained zincite, massicot, franklinite, anglesite, and willemite. The sequential extraction of the fugitive dust from the Zn smelter stacks showed that Zn, Cd, and Pb were predominantly bound to the exchangeable (FI), carbonate (FII), and reducible (FIII) fractions, whereas Cu and As were significantly associated with the residual (FV) fraction and had low mobility. The estimation of remobilized concentrations of Zn, Cd, and Pb bound to labile fractions (FI and FII) in the fugitive dust implied their severe environmental and human health risks. In contrast, the studied metal(loid)s in the roof dust had low mobility except for Pb, implying the insignificant risks of roof dusts, although anthropogenic dusts from the Zn smelter significantly impacted FV as well as the non-residual fractions based on the Pb isotopic compositions of geochemical fractions. Similarly, the mobility and bioavailability of the studied metal(loid)s were low in agricultural soils, except for Cd, suggesting a low adverse effect on crops cultivated in the soil. The decrease in labile Cd fractions with depth indicated that the agricultural soil did not retain anthropogenic Cd in the soil subsurface. The mineralogical investigation combined with sequential extraction revealed that the different mobility of Zn, Cd, and Pb between fugitive dusts, roof dusts and agricultural soils resulted from the different solubility of metal-bearing minerals, e.g., zincite, willemite, simonkolleite which were not detected in the residuals of the fugitive dust collected after FIII extraction.

8.
Environ Sci Pollut Res Int ; 28(7): 7742-7755, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32219649

RESUMO

Burial is applied to dispose of livestock carcasses due to its convenience and cost efficiency despite concerns about groundwater contamination by leachate from burial pits. In particular, the burial method has caused debates about groundwater contamination sources around on-farm livestock burial sites because of pre- and coexisting contamination from livestock production and agriculture. To assess the causes of groundwater contamination around poultry burial pits that were constructed after an outbreak of avian influenza in 2010-11 in Korea, hydrochemical data of groundwater samples from monitoring wells (MWs, n = 14) and household wells (HWs, n = 30) were monitored to differentiate contamination sources. Hydrochemical data indicated that groundwater from MWs is characterized by higher enrichments of inorganic constituents including electrical conductivity (EC), NH4, Ca, Mg, K, SO4, HCO3, Fe(Total), and Mn(Total), but lower concentrations of DO than groundwater from HWs. The combined use of the principal component analysis (PCA) and K-means cluster analysis (KCA) indicated that groundwater in seven MWs was affected by leachate. The parameters such as NH4, Ca, Mg, K, SO4, HCO3, Fe(Total), and Mn(Total) are expected to be useful to identify the impact of leachate on groundwater in agricultural areas. This study suggests that (1) regional hydrochemical characteristics should be assessed to distinguish the effect of livestock burial leachate from other contamination sources and (2) the combined use of PCA and KCA is effective to identify the weakened impact of leachate leakage among overlapping multiple sources and processes of groundwater contamination.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Animais , Sepultamento , Monitoramento Ambiental , Fazendas , Gado , Aves Domésticas , República da Coreia , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 765: 142790, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069480

RESUMO

Ulaanbaatar City, Mongolia is rapidly becoming urbanized and attracts great attention because of environmental issues. This study was performed to assess the status of groundwater quality in Ulaanbaatar at an early but growing stage of urbanization, focusing on nitrate contamination in relation to land use. Along with high total dissolved solids and NO3- concentrations, significant contamination of groundwater is indicated by positive loadings of NO3-, Cl- and δ15N-NO3- along the first principal component of the principal component analysis (PCA). Based on the concentrations and δ15N values of nitrate, groundwater is classified into two groups: Group I (baseline quality) and II (contaminated). Nitrate in Group II water in urbanized (esp. peri-urban) areas is higher in concentration (> 10 mg/l NO3-) and N-isotopic values (> 10‰ δ15N-NO3-), while pristine hydrochemistry is observed restrictedly in grassland and forest areas. Other ions (e.g., Cl- and SO42-) are also higher in Group II water. The δ15N-NO3- values in Group II water in combination with the spatial distribution on the land use map indicate that nitrate originates from untreated sewage effluents including pit-latrine leakage in peri-urban areas, while nitrate in Group I water originates from soil organic matter. The relationship between nitrate concentrations and δ2H (and δ18O) values of water suggests that nitrate enrichment is also influenced by evaporation during groundwater recharge. With the help of PCA for compositional data, we suggest a hydrochemical index for groundwater contamination assessment; i.e., the Groundwater Quality Index (GQI) that consists of three variables (concentrations of dissolved silica, nitrate and chloride) and can be used to delineate zones vulnerable to nitrate contamination as a crucial step for the efficient monitoring and management of groundwater quality. The study results suggest an urgent need for the management of unsealed pit latrines that are common in peri-urban areas with high population density.

10.
J Environ Manage ; 276: 111333, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919168

RESUMO

This study examined a mountainous area with two hydrochemically distinct CO2-rich springs to understand the origin, flow, and leakage of CO2, which may provide implications for precise monitoring of CO2 leakage in geological carbon storage (GCS) sites. The carbon isotopic compositions of dissolved inorganic carbon (DIC) in CO2-rich water (δ13CDIC) and those of soil CO2 (δ13CCO2) indicated a deep-seated CO2 supply to the near-surface environment in the study area. The hydrochemical difference (e.g. pH, total dissolved solids) for the two CO2-rich springs separated by 7 m, despite similar δ13CDIC and partial pressure of CO2, was considered as the result of different evolution of shallow groundwater affected by deep-seated CO2 preferentially rising along fracture zones. Electrical resistivity tomography also suggested flow through fracture zones beneath the CO2-rich springs, showing low resistivity compared to other surveyed zones. However, soil CO2 efflux was low compared to that in other natural CO2 emission sites, and in particular it was noticeably low near the CO2-rich springs, whereas δ13CCO2 was high close the CO2-rich springs. The dissolution of CO2 in the near-surface water body seemed to decrease the deep-seated CO2 leakage through the soil layer, while δ13CCO2 imprinted the source. End-member mixing analysis was performed to assess the contribution of deep-seated CO2 to the low soil CO2 efflux by assuming that atmospheric CO2 and soil CO2 (by respiration) as well as deep-seated CO2 contribute to the soil CO2 efflux. For each end-member, characteristic δ13CCO2 and CO2 concentrations were defined, and then their apportionment to soil CO2 efflux was estimated. The resultant proportion of deep-seated CO2 was up to 8.8%. Unlike the spatial distribution of high soil CO2 efflux, high proportions exceeding 3% were found around the CO2-rich springs along the east-west valley. The study results indicate that soil CO2 efflux measurement should be combined with carbon isotopic analysis in GCS sites for CO2 leakage detection because CO2 dissolution in the underground water body may blur leakage detection on the surface. The implication of this study is the need to quantitatively assess the contribution of deep-seated CO2 using the soil CO2 concentration, soil CO2 efflux, and δ13CCO2 at each measurement site.


Assuntos
Água Subterrânea , Solo , Carbono , Dióxido de Carbono/análise , Isótopos de Carbono/análise
11.
Sci Total Environ ; 713: 136536, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955082

RESUMO

The spatial extent of dust emissions from a Zn smelter was assessed based on metal concentrations in roof dust samples. In addition, the vertical mobility of metal loads in soils was assessed from metal concentrations and Pb isotopic compositions. Moreover, the source apportionment of metals in the roof dusts and soils was estimated using Pb isotopes. A total of 13 roof dust and 11 smelter dust samples were collected respectively from residential houses and smelter stacks. The vertical distribution in soils was assessed at 10 cm intervals in four sites along the predominant wind direction. High metal concentrations were found in the roof dusts, which were enriched in Zn, Pb, Cd, and Cu by a factor of 48-937, 13-169, 161-3400 and 10-135, respectively, compared to the regional background values of soils, depending on the distance from the smelter. Horizontal extents of the airborne metal transport were estimated to exceed the impact radius (<4 km) calculated by a numerical model. As for soils, the metal concentrations were high in the surface layer and decreased abruptly with depth. The vertical extent of the metal contamination was found up to 60 cm. Considering the operational period of the smelter, the Pb migration rate was 0.4-1.3 cm/year and the farmlands showed higher penetration rates than the other sites, probably due to agricultural practices. The Pb isotope compositions for the contaminated soils lay on a mixing line between the anthropogenic Pb of the smelter and the geogenic Pb of the background soils, which confirmed that the emission and deposition of the airborne particles produced by the smelter contributed to 49-83% of trace metals in the surface soils. Similarly, the Pb isotopic compositions of the roof dusts indicated that most of Pb was derived from the smelter, in particular, from the casting and leaching stacks.

12.
J Hazard Mater ; 382: 121044, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450212

RESUMO

As-contaminated soil samples were chosen to identify As sources near a Zn smelter where Zn contamination in soils was found to be of smelter origin. Based on the As concentrations and Pb isotopic compositions, high As levels in soils were originated from the geogenic source. There was no consistent trend in As concentrations with either depth or distance from the smelter, while the Pb isotopic compositions in soils varied regardless of As levels and were quite different from those of smelter origin. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) suggested that the high As concentrations were due to arsenopyrite and its alteration minerals, which were easily found but heterogeneously distributed within host rocks. A detailed investigation of As levels and Pb isotropic compositions along the predominant wind direction also supported that the As contamination was of geogenic origin unlike the Zn contamination. The atmospheric emissions from the smelter increased the Zn concentrations and decreased the 206Pb/207Pb ratios at surface layers, while the As concentrations occasionally exceeded the worrisome level at deep layers. According to the Pb isotropic compositions, about 21% of the As-contaminated soils were impacted by the smelter, in particular at the surface layer.

13.
Environ Sci Pollut Res Int ; 26(21): 21216-21238, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115822

RESUMO

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92 × 10-10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Fenol/análise , Porosidade , Solo/química
14.
Chemosphere ; 217: 183-194, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419376

RESUMO

Arsenic sources were identified in As-contaminated soils 4 km-7 km from a closed Cu smelter. Host rocks, heavy minerals in contaminated soils, ore minerals in quartz veins (geogenic sources) and bottom ash from the Cu smelter (an anthropogenic source) were investigated as potential sources. As a result, heavy minerals and bottom ash were found to contain higher As concentrations than the contaminated soils. Some of the host rock samples also showed higher As levels than the contaminated soils. Arsenopyrite was one of the frequently detected ore minerals in quartz veins. The As concentrations in soils did not decrease with soil depth or distance from the smelter. These results imply that the atmospheric emission from the smelter was not a major arsenic source. Based on the geochemical investigation and Pb isotopic analysis, the As contamination was affected by both regional ore mineralization and the host rock, and the influence of the smelter was limited. The spatial analysis of As concentrations and Pb isotopic ratios suggested that As contamination was mainly due to regional ore mineralization. The 206Pb/207Pb and 206Pb/204Pb ratios of the contaminated soils were plotted on the mixing line between background soils and ore minerals. The source apportionment results indicated a significant contribution of regional ore mineralization (average 52.9 ±â€¯30.3%) to the As contamination. The contribution of this study is that we identified that the major source of soil contamination was of geologic origin despite an anthropogenic source nearby using geochemical and Pb isotopic investigation.


Assuntos
Agricultura , Arsênio/análise , Cobre , Poluentes do Solo/análise , Arsenicais , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Resíduos Industriais/análise , Compostos de Ferro , Isótopos/análise , Chumbo/análise , Metais Pesados/análise , Minerais , República da Coreia , Solo/química , Sulfetos
15.
J Hazard Mater ; 364: 475-487, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384257

RESUMO

This study was conducted to assess the anthropogenic impact on the metal concentration in agricultural soils in the vicinity of a Zn smelter. We determined Pb isotope ratios to trace source of metals and calculate source apportionment. 19.7% of the agricultural soil samples had Zn concentrations exceeding the Korean worrisome level (WL). The isotopic variation in the contaminated agricultural soils reflected the input of contaminants derived from the Zn smelter. The spatial distribution of Zn concentrations and Pb isotopes suggested that the Zn smelter dust fallout was the major source of heavy metal pollution in the agricultural soils. Lead isotope compositions of soil horizon I was comparable to those of soil horizon II, indicating that smelter-origin Zn had migrated vertically. Binary mixing between Zn concentrates and background soils could explain the variations in Pb isotope ratios in the contaminated agricultural soils. Source apportionment calculations showed that for agricultural soils that were found to exceed the Korean countermeasure standard (CS), the average proportion of smelter-origin Zn was 45.8%-83.3% while for agricultural soils that exceeded the WL but were below the CS, the average proportion of smelter-origin Zn was 36.3%-68.1%. The remainder was derived from a geogenic source.

16.
Environ Pollut ; 243(Pt B): 1637-1647, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30296760

RESUMO

Solid phase speciation of chromium in dry dust deposition and road paint was determined using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). Spherical black carbon aggregates in dry dust deposition contained discrete nano-sized lead chromate (PbCrO4) and zinc chromate (ZnCrO4), which likely originated from yellow traffic paint and zinc chromate primer (corrosion resistant pigment), respectively based on their main applications. Road marking paint samples from auto roads included lead chromate particles whose size, shape, composition and crystal structure were similar to those in dry dust deposition. A slight difference was found at the particle boundary. Namely, lead chromate in traffic paint was encapsulated by silica-bearing matrix, while discrete lead chromate in the black carbon of dry deposition was rarely enclosed within silica-bearing matrix. The Cr K edge X-ray absorption near edge structure (XANES) spectrum for dry deposition showed the characteristic pre-edge resonance peak similar to the spectra for the Cr(VI) standard and road paint, but the lower intensity. The amount of Cr(VI) accounted for approximately 45% of the total Cr in the dust sample. The solid phase speciation of Cr observed using TEM and their valence states determined using XANES were consistent with the chemical speciation determined using the sequential extraction. The contribution of this study is that XANES was applied to identify Cr valance states in urban dust deposition and zinc chromate was found as a Cr(VI) phase in dry dust deposition using TEM. These study results provide novel data on Cr speciation and Cr(VI)-containing mineral phases in dry dust deposition and their potential sources. Based on the wide use of lead and zinc chromate, atmospheric contamination with these solid phase speciation of Cr(VI) is expected in other cities in the world.


Assuntos
Cromatos/análise , Cromo/química , Poeira/análise , Poluição Ambiental/análise , Chumbo/análise , Pintura/análise , Fuligem/análise , Compostos de Zinco/análise , Cidades , Microscopia Eletrônica de Transmissão , República da Coreia , Dióxido de Silício/química , Espectroscopia por Absorção de Raios X
17.
Environ Sci Pollut Res Int ; 24(32): 24816-24843, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913678

RESUMO

Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2 = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in the chemical ranking systems. In the surface spill scenario, the pollutant loadings were zeros for all chemicals, except methylamine to soil whose pollutant loading was smaller than that in the subsurface leak scenario by 4 orders of magnitude. The maximum mass and the average mass multiplied by duration in soil greatly depended on leaching fluxes (r = 1.0 and 0.9, respectively), while the effect of leaching fluxes diminished below the water table. The contribution of this work is that a physics-based numerical model was used to quantitatively compare the subsurface pollutant loading in a chemical accident for 72 chemical substances, which can scientifically defend a simpler and more qualitative assessment of pollutant loadings. Besides, this study assessed pollutant loadings to soil (unsaturated zone) and groundwater (saturated zone) all together and discussed their interactions.


Assuntos
Vazamento de Resíduos Químicos , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Modelos Teóricos , Solo/química
18.
Chemosphere ; 184: 74-85, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28582766

RESUMO

Physicochemical characteristics of bottom sediment in the Hoedong reservoir were studied to evaluate the effectiveness of the reservoir as traps for trace metals. Roadside soil, stream sediment and background soil were also studied for comparison. Sequential extractions were carried out, and lead isotopic compositions of each extraction were determined to apportion Pb sources. Besides, particle size distribution of roadside soil, and metal concentrations and Pb isotopes of each size group were determined to characterize metal contamination. In result, Zn and Cu were enriched in sediment through roadside soil. The data on metal partitioning implied that Zn posed potential hazards for water quality. Meanwhile, the noticeable reduction of the 206Pb/207Pb isotopic ratio in the acid-soluble fraction in the size group 200 µm - 2 mm of national roadside soil indicated that this size group was highly contaminated by automotive emission with precipitation of acid-soluble secondary minerals during evaporation. Based on the Pb isotopic ratios, the dry deposition of Asian dust (AD) and non-Asian dust (NAD) affected roadside soil, while the effects of AD and NAD on bottom sediment appeared to be low given the low metal concentrations in sediment. Metal concentrations and Pb isotopic compositions indicated that sediments were a mixture of background and roadside soil. Source apportionment calculations showed that the average proportion of traffic Pb in bottom and stream sediments was respectively 34 and 31% in non-residual fractions, and 26 and 28% in residual fraction. The residual fraction of sediments appeared to be as contaminated as the non-residual fractions.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Poeira/análise , Isótopos , Tamanho da Partícula , República da Coreia , Rios , Solo/química , Poluentes do Solo/análise , Oligoelementos
19.
Sci Rep ; 6: 36088, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779222

RESUMO

Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.


Assuntos
Poluentes Atmosféricos/análise , Cromatos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Chumbo/análise , Material Particulado/análise , Cromo/análise , Microscopia Eletrônica de Transmissão , República da Coreia , Espectrometria por Raios X
20.
Environ Pollut ; 210: 65-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708760

RESUMO

Lead isotopic compositions were determined in leachates that were generated using sequential extractions of dry deposition samples of Asian dust (AD) and non-Asian dust (NAD) and Chinese desert soils, and used to apportion Pb sources. Results showed significant differences in (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in non-residual fractions between the dry deposition samples and the Chinese desert soils while (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in residual fraction of the dry deposition of AD and NAD were similar to the mean (206)Pb/(207)Pb and (206)Pb/(204)Pb in residual fraction of the Alashan Plateau soil. These results indicate that the geogenic materials of the dry deposition of AD and NAD were largely influenced by the Alashan Plateau soil, while the secondary sources of the dry deposition were different from those of the Chinese desert soils. In particular, the lead isotopic compositions in non-residual fractions of the dry deposition were homogenous, which implies that the non-residual four fractions (F1 to F4) shared the primary anthropogenic origin. (206)Pb/(207)Pb values and the predominant wind directions in the study area suggested that airborne particulates of heavily industrialized Chinese cities were one of the main Pb sources. Source apportionment calculations showed that the average proportion of anthropogenic Pb in the dry deposition of AD and NAD was 87% and 95% respectively in total Pb extraction, 92% and 97% in non-residual fractions, 15% and 49% in residual fraction. Approximately 81% and 80% of the anthropogenic Pb was contributed by coal combustion in China in the dry deposition of AD and NAD respectively while the remainder was derived from industrial Pb contamination. The research result proposes that sequential extractions with Pb isotope analysis are a useful tool for the discrimination of anthropogenic and geogenic origins in highly contaminated AD and NAD.


Assuntos
Poeira/análise , Chumbo/isolamento & purificação , China , Cidades , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Chumbo/análise , Chumbo/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...