Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921869

RESUMO

Shear banding is much dependent on the glass-glass interfaces (GGIs) in metallic nanoglasses (NGs). Nevertheless, the current understanding of the glass phase of GGIs is not well established for controlling the shear banding in NGs. In this study, Co-P NGs are investigated by molecular dynamics simulations to reveal the phenomenon of elemental segregation in the GGI regions where the content of Co is dominant. Specifically, Co segregation results in the formation of GGIs, whose atomic structures are comparatively less dense than those present in the interiors of glassy grains. It is suggested that the Co segregation significantly reduces the shear resistance of GGIs. Thus, such compositional heterogeneity influences the mechanical properties of Co-P NGs. Particularly, shear banding is much altered through enhancing the Co segregation in the GGI regions, which leads to improvements in the ductility of Co-P NGs. This study advances knowledge of the formation of the GGI phase in NGs, which could enable GGI engineering in enhancing the mechanical properties of NGs.

2.
Materials (Basel) ; 16(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38068231

RESUMO

Concrete, as an engineering material with extremely wide applications, is widely used in various infrastructure projects such as bridges, highways, and large buildings. However, structures such as highways and bridges often need to be situated in variable and harsh service environments for long periods. They not only face cyclic reciprocating vehicle loads but also have to contend with the effects of temperature cycling. Therefore, studying the impact and mechanism of temperature differential cycling on the compressive strength and fatigue life of cement concrete has certain theoretical significance and practical value. This study employed a comprehensive experimental design to investigate cement concrete specimens subjected to typical temperature variations (20-60 °C) and different numbers of temperature differential cycling (0, 60, 120, 180, 240, 300). Axial compressive strength tests, ultrasonic tests, and compressive fatigue tests were conducted. The axial compressive strength test measured the compressive strength of the cement concrete. It was found that with an increase in the number of temperature differential cycling, the compressive strength exhibited a trend of an initial increase followed by a decrease: at 60 cycles, the strength increased by 10.8%, gradually declined; returned to near-initial strength at 120 cycles, and continued decreasing, reaching a decline of 19.4% at 300 cycles. The ultrasonic test measured the ultrasound velocity of the concrete specimens after different temperature differential cycling. It revealed a decreasing trend in ultrasound velocity with an increase in times of temperature differential cycling, showing a strong linear relationship between the ultrasound velocity loss and strength loss, confirming the correlation between the degree of concrete strength degradation and internal damage. The compressive fatigue test analyzed the fatigue life variation in cement concrete under different times of temperature differential cycling and stress levels, showing good adherence to the Weibull distribution pattern. Based on the approximation assumptions of log-normal distribution and the Weibull distribution, the Weibull distribution parameters for the compressive fatigue life of cement concrete under temperature differential cycling were obtained.

3.
Materials (Basel) ; 16(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770013

RESUMO

Mechanical properties determine the use of two-component polyurethane materials. The compatibility of two components in the polyether polyol-MDI molecular system greatly influences the formation of mechanical properties in polyurethane materials. In this paper, we studied and evaluated the compatibility and mechanical properties of two-component polyurethane at multiple scales by combining molecular dynamics simulation with macroscopic experiments, which is an important guideline for synthesizing and preparing two-component polyurethanes. We evaluated the stability of the two-component polyurethane system by calculating the solubility parameter, binding energy, and diffusion coefficient at four temperatures with three isocyanate contents. The Perl scripting language obtained the mechanical properties of the MDI-polyether polyol system. The MD calculation results show that the solubility parameter of two-component polyurethane negatively correlated with temperature, and the intermolecular binding energy and MDI diffusion coefficient positively correlated with temperature. When the mass ratio of polyether polyol to isocyanate was 1:0.6, the solubility parameter difference between the two was 1.43 (J/cm3)1/2, the intermolecular binding energy was 531.68 kcal/mol, and the two-component system was more stable. A macroscopic direct tensile test was employed to assess the polyurethane elastomers' tensile properties. Our results show that the tensile strength of polyurethane elastomers increased with the increase in isocyanate content and decrease in temperature. Furthermore, the elongation at the break decreased, and the modulus increased, which is consistent with the law of molecular simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...