Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 598: 217118, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39002690

RESUMO

Recent studies have highlighted palmitoylation, a novel protein post-translational modification, as a key player in various signaling pathways that contribute to tumorigenesis and drug resistance. Despite this, its role in bladder cancer (BCa) development remains inadequately understood. In this study, ZDHHC9 emerged as a significantly upregulated oncogene in BCa. Functionally, ZDHHC9 knockdown markedly inhibited tumor proliferation, promoted tumor cell apoptosis, and enhanced the efficacy of gemcitabine (GEM) and cisplatin (CDDP). Mechanistically, SP1 was found to transcriptionally activate ZDHHC9 expression. ZDHHC9 subsequently bound to and palmitoylated the Bip protein at cysteine 420 (Cys420), thereby inhibiting the unfolded protein response (UPR). This palmitoylation at Cys420 enhanced Bip's protein stability and preserved its localization within the endoplasmic reticulum (ER). ZDHHC9 might become a novel therapeutic target for BCa and could also contribute to combination therapy with GEM and CDDP.

2.
Int J Biol Macromol ; 261(Pt 1): 129636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272402

RESUMO

BACKGROUND: Renal cell cancer (RCC) is characterized by abnormal lipid accumulation. However, the specific mechanism by which such lipid deposition is eliminated remains unclear. Circular RNAs (circRNAs) widely regulate various biological processes, but the effect of circRNAs on lipid metabolism in cancers, especially clear cell renal cell carcinoma (ccRCC), remains poorly understood. METHODS: The downregulated circRNA, hsa_circ_0086414, was identified from high-throughput RNA-sequencing data of human ccRCC and pair-matched normal tissues. The target relationship between circRNA_0086414 and miR-661, and the transducer of ERBB2 (TOB2) was predicted using publicly available software programs and verified by luciferase reporter assays. The clinical prognostic value of TOB2 was evaluated by bioinformatic analysis. The expression levels of circRNA_0086414, miR-661, TOB2, and perilipin 3 (PLIN3) were measured by quantitative reverse-transcription polymerase chain reaction or western blot analysis. Cell Counting Kit-8, transwell assays, and xenograft models were employed to assess the biological behaviors of the hsa_circ_0086414/TOB2 axis. Oil Red staining and triglyceride assay was conducted to assess lipid deposition. RESULTS: Herein, we identified a downregulated circRNA, hsa_circ_0086414. Functionally, the restored hsa_circ_0086414 inhibited ccRCC proliferation, metastasis, and lipid accumulation in vitro and in vivo. Furthermore, the downregulated TOB2 predicted adverse prognosis and promoted cancer progression and lipid deposition in ccRCC. Mechanically, the binding of hsa_circ_0086414 to miR-661, as a miRNA sponge, upregulates the expression of TOB2, wielding an anti-oncogene effect. Importantly, the restored hsa_circ_0086414/TOB2 axis significantly contributed to the elimination of lipid deposition by inhibiting the lipid metabolism regulator PLIN3 in ccRCC cells. CONCLUSIONS: Our data highlight the importance of the hsa_circ_0086414/TOB2/PLIN3 axis as a tumor suppressor and lipid eliminator in ccRCC. The positive modulation of the hsa_circ_0086414/TOB2 axis might lead to the development of novel treatment strategies for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Perilipina-3 , RNA Circular/genética , Neoplasias Renais/genética , Proliferação de Células/genética , Lipídeos , MicroRNAs/genética , Linhagem Celular Tumoral , Receptor ErbB-2
3.
Mol Biomed ; 4(1): 41, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962768

RESUMO

RNA binding proteins (RBPs) are crucial for cell function, tissue growth, and disease development in disease or normal physiological processes. RNA binding motif protein 47 (RBM47) has been proven to have anti-tumor effects on many cancers, but its effect is not yet clear in renal cancer. Here, we demonstrated the expression and the prognostic role of RBM47 in public databases and clinical samples of clear cell renal carcinoma (ccRCC) with bioinformatics analysis. The possible mechanism of RBM47 in renal cancer was verified by gene function prediction and in vitro experiments. The results showed that RBM47 was downregulated in renal cancers when compared with control groups. Low RBM47 expression indicated poor prognosis in ccRCC. RBM47 expression in renal cancer cell lines was reduced significantly when compared to normal renal tubular epithelial cells. Epithelial-mesenchymal transition (EMT) and transforming growth factor-ß signaling pathway was associated with RBM47 in ccRCC by Gene set enrichment analysis. RBM47 expression had a positive correlation with e-cadherin, but a negative correlation with snail and vimentin. RBM47 overexpression could repress the migration, invasion activity, and proliferation capacity of renal cancer cells, while RBM47 inhibition could promote the development of the malignant features through EMT signaling by RNA stability modification. Therefore, our results suggest that RBM47, as a new molecular biomarker, may play a key role in the cancer development of ccRCC.

4.
Int J Med Sci ; 20(1): 57-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619219

RESUMO

Clear cell renal cell carcinoma (ccRCC) has the highest incidence rate among all pathological types of kidney cancers. Although the role of transient receptor potential (TRP) ion channel TRPM2 has been studied in many cancers, its function in ccRCC is still unexplored. In this study, using the KIRC module of TCGA, we found that TRPM2 was upregulated in ccRCC tissues and was related to poor prognosis. Gene set enrichment analysis (GSEA) showed that TRPM2 was related to epithelial-to-mesenchymal transition (EMT), TCA cycle, fatty acid metabolism, and immune system-related functions. Functional experimental results indicated that TRPM2 could promote ccRCC progression. Furthermore, mechanism analysis showed that knocking out TRPM2 can reverse these phenotypes by increasing endoplasmic reticulum stress and decreasing EMT. We also investigated the potential role of TRPM2 in immune cell infiltration in the tumor microenvironment. Our study indicated that TRPM2 promotes ccRCC progression and may be a novel target for ccRCC therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Canais de Cátion TRPM , Humanos , Carcinoma de Células Renais/patologia , Canais de Cátion TRPM/genética , Prognóstico , Neoplasias Renais/patologia , Estresse do Retículo Endoplasmático/genética , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
5.
iScience ; 26(1): 105764, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590170

RESUMO

SLC17A9 is a vesicular ATP transport protein that plays an important role in determining cell functions and the onset and progression of different diseases. In this study, SLC17A9 was initially identified as a potential diagnostic and prognostic risk biomarker for clear cell renal cell carcinoma (ccRCC). Then, the aberrant expression levels of SLC17A9 were confirmed in both the cell lines and clinical tissues. Mechanistically, SLC17A9 could upregulate the expression of PTHLH, thus promoting epithelial-mesenchymal transition (EMT) in ccRCC. Functionally, SLC17A9 knockdown inhibited the proliferation, migration, and invasion activity of renal cancer cells, whereas its overexpression led to stronger cell viability and more malignant phenotype in vitro. The overexpression of SLC17A9 in vivo could significantly contribute to the growth of tumors. Finally, we found that SLC17A9 might be related to the drug resistance of vorinostat. Cumulatively, this study demonstrated that the SLC17A9-PTHLH-EMT axis could promote the progression of ccRCC.

6.
Cancer Lett ; 554: 216023, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436682

RESUMO

Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Gencitabina , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , RNA Circular/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo
7.
Life Sci ; 293: 119902, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487784

RESUMO

BACKGROUND: Psoriasis is a systemic chronic inflammatory skin disorder that was prone to recurrence. The RNA binding protein GNL3 has an important function in maintaining the proliferative ability of stem cells, and its overexpression leads to apoptosis. GNL3 is expressed in the epidermis, however, its regulatory mechanism in psoriasis vulgaris is still poorly understood. OBJECTIVE: To identify the role of GNL3 in the pathogenesis of psoriasis vulgaris. MATERIALS AND METHODS: RNA-seq was performed to obtain the data of genes' expression and splicing events in Hela cells after shGNL3 and shCtrl was transferred. High quality results of differentially expressed genes (DEGs) and alternative splicing events (ASEs) were further attained by quality control and analysis. Through the functional enrichment analysis of DEGs and ASEs, the regulating effect of GNL3 was discussed, and the hypothesis was further confirmed in HaCat cells and psoriasis lesions. RESULTS: The mRNA expression of IL23A in Hela cells was upregulated in GNL3 knockdown, and the ratio of ASE occurred in TNFAIP3 was increased. However, in HaCaT cells, the mRNA expression level of IL23A was downregulated in GNL3 knockdown, and the ratio of ASE of TNFAIP3 was decreased. Additionally, the results obtained in HaCaT cells was further validated in the lesional psoriatic skin. CONCLUSION: GNL3 takes an important part in the development of psoriasis vulgaris by regulating the IL23/IL17 axis, which may serve as the basis of effective targeted treatment in future.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Proteínas Nucleares/metabolismo , Psoríase/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA-Seq/métodos , Linhagem Celular Transformada , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Interleucina-17/genética , Interleucina-23/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas Nucleares/genética , Psoríase/genética , Psoríase/patologia , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...