Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37420424

RESUMO

Quantum networks enable many applications beyond the reach of classical networks by supporting the establishment of long-distance entanglement connections, and are already stepped into the entanglement distribution network stage. The entanglement routing with active wavelength multiplexing schemes is urgently required for satisfying the dynamic connection demands of paired users in large-scale quantum networks. In this article, the entanglement distribution network is modeled into a directed graph, where the internal connection loss among all ports within a node is considered for each supported wavelength channel, which is quite different to classical network graphs. Afterwards, we propose a novel first request first service (FRFS) entanglement routing scheme, which performs the modified Dijkstra algorithm to find out the lowest loss path from the entangled photon source to each paired user in order. Evaluation results show that the proposed FRFS entanglement routing scheme can be applied to large-scale and dynamic topology quantum networks.

2.
Sci Rep ; 9(1): 15733, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673000

RESUMO

State-of-art quantum key distribution (QKD) systems are performed with several GHz pulse rates, meanwhile privacy amplification (PA) with large scale inputs has to be performed to generate the final secure keys with quantified security. In this paper, we propose a fast Fourier transform (FFT) enhanced high-speed and large-scale (HiLS) PA scheme on commercial CPU platform without increasing dedicated computational devices. The long input weak secure key is divided into many blocks and the random seed for constructing Toeplitz matrix is shuffled to multiple sub-sequences respectively, then PA procedures are parallel implemented for all sub-key blocks with correlated sub-sequences, afterwards, the outcomes are merged as the final secure key. When the input scale is 128 Mb, our proposed HiLS PA scheme reaches 71.16 Mbps, 54.08 Mbps and 39.15 Mbps with the compression ratio equals to 0.125, 0.25 and 0.375 respectively, resulting achievable secure key generation rates close to the asymptotic limit. HiLS PA scheme can be applied to 10 GHz QKD systems with even larger input scales and the evaluated throughput is around 32.49 Mbps with the compression ratio equals to 0.125 and the input scale of 1 Gb, which is ten times larger than the previous works for QKD systems. Furthermore, with the limited computational resources, the achieved throughput of HiLS PA scheme is 0.44 Mbps with the compression ratio equals to 0.125, when the input scale equals up to 128 Gb. In theory, the PA of the randomness extraction in quantum random number generation (QRNG) is same as the PA procedure in QKD, and our work can also be efficiently performed in high-speed QRNG.

3.
Dalton Trans ; 42(11): 3941-9, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334432

RESUMO

Studies of magnetic properties of a family of tetranuclear M(II)(2)Ln(III)(2) (M = Ni, Zn; Ln = Dy, Gd and Y) complexes with hmp (anion of 2-hydroxymethylpyridine) and benzoate as ligands are reported. In these complexes, metal ions (M or Ln) occupy the four alternative corners of a distorted cubane with oxygen atoms from alkoxyl groups on the others. Complexes 1, 2 and 3 crystallized in P2(1)/c and complexes 4 and 5 in C2/c space groups. Although in different space groups, complexes 1-5 have very similar structures which permit the magnetic interactions to be systematically compared with respect to metal ion pairs. In complex 3 (Ni(2)Y(2)), clear ferromagnetic coupling between Ni(II) ions can be seen, with: g = 2.16, S = 2, D = -0.95 cm(-1), J = +3.77 cm(-1) (or g = 2.20, S = 2, D = +1.51 cm(-1)). In complex 5 (Zn(2)Gd(2)), a very weak antiferromagnetic coupling between the Gd(III) ions was observed: g = 2.08, J = -0.05 cm(-1). Based on these data, we concluded that the decrease in χ(M)T-T upon cooling for complex 2 (Zn(2)Dy(2)) might be partly due to antiferromagnetic coupling between Dy(III) ions. The data from complex 4 (Ni(2)Gd(2)) were analyzed based on the preceding results and gave moderate ferromagnetic coupling between Ni(II) and Gd(III) with J = 0.26 cm(-1). A detailed study of magnetic properties of complex 1 (Ni(2)Dy(2)) was not possible, because of its strong orbital contributions from Dy(III) ions. In addition, frequency-dependent out-of-phase signals were clearly observed for both complexes 1 and 2 which can be attributed to magnetoanisotropy contributions from Dy(III) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...