Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Science ; 385(6705): 161-167, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991067

RESUMO

Black-phase formamidinium lead iodide (α-FAPbI3) perovskites are the desired phase for photovoltaic applications, but water can trigger formation of photoinactive impurity phases such as δ-FAPbI3. We show that the classic solvent system for perovskite fabrication exacerbates this reproducibility challenge. The conventional coordinative solvent dimethyl sulfoxide (DMSO) promoted δ-FAPbI3 formation under high relative humidity (RH) conditions because of its hygroscopic nature. We introduced chlorine-containing organic molecules to form a capping layer that blocked moisture penetration while preserving DMSO-based complexes to regulate crystal growth. We report power conversion efficiencies of >24.5% for perovskite solar cells fabricated across an RH range of 20 to 60%, and 23.4% at 80% RH. The unencapsulated device retained 96% of its initial performance in air (with 40 to 60% RH) after 500-hour maximum power point operation.

2.
Physiol Plant ; 176(4): e14419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973451

RESUMO

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Assuntos
Lactonas , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914787

RESUMO

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Assuntos
Parede Celular , Temperatura Baixa , Metabolismo Energético , Frutas , Sulfeto de Hidrogênio , Solanum lycopersicum , Parede Celular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Frutas/metabolismo , Frutas/genética , Frutas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Armazenamento de Alimentos/métodos , Sulfetos/farmacologia , Sulfetos/metabolismo
4.
Front Plant Sci ; 15: 1330948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828220

RESUMO

Abscisic acid (ABA) and nitric oxide (NO), as unique signaling molecules, are involved in plant growth, developmental processes, and abiotic stresses. However, the interaction between ABA and NO under abiotic stresses has little been worked out at present. Therefore, this paper reviews the mechanisms of crosstalk between ABA and NO in the regulation of plants in response to environmental stresses. Firstly, ABA-NO interaction can alleviate the changes of plant morphological indexes damaged by abiotic stresses, for instance, root length, leaf area, and fresh weight. Secondly, regulatory mechanisms of interaction between ABA and NO are also summarized, such as reactive oxygen species (ROS), antioxidant enzymes, proline, flavonoids, polyamines (PAs), ascorbate-glutathione cycle, water balance, photosynthetic, stomatal movement, and post-translational modifications. Meanwhile, the relationships between ABA and NO are established. ABA regulates NO through ROS at the physiological level during the regulatory processes. At the molecular level, NO counteracts ABA through mediating post-translational modifications. Moreover, we also discuss key genes related to the antioxidant enzymes, PAs biosynthesis, ABA receptor, NO biosynthesis, and flavonoid biosynthesis that are regulated by the interaction between ABA and NO under environmental stresses. This review will provide new guiding directions for the mechanism of the crosstalk between ABA and NO to alleviate abiotic stresses.

5.
BMC Plant Biol ; 24(1): 286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627660

RESUMO

Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.


Assuntos
Trichosanthes , Trichosanthes/genética , Frutas/genética , Melhoramento Vegetal , Fenótipo , Genes de Plantas/genética
6.
BMC Plant Biol ; 24(1): 97, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331770

RESUMO

BACKGROUND: Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS: The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION: The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.


Assuntos
Melatonina , Solanum lycopersicum , Clorofila/metabolismo , Melatonina/metabolismo , Plântula/metabolismo , Solanum lycopersicum/genética , Clorofila A/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Resistência à Seca , Heme/metabolismo , Heme/farmacologia
7.
Adv Mater ; 36(21): e2313746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332722

RESUMO

In organic light-emitting diode (OLED), achieving high efficiency requires effective triplet exciton confinement by carrier-transporting materials, which typically have higher triplet energy (ET) than the emitter, leading to poor stability. Here, an electron-transporting material (ETM), whose ET is 0.32 eV lower than that of the emitter is reported. In devices, it surprisingly exhibits strong confinement effect and generates excellent efficiency. Additionally, the device operational lifetime is 4.9 times longer than the device with a standard ETM, 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl) phenyl (whose ET 0.36 eV is higher than the emitter). This anomalous finding is ascribed to the exceptionally long triplet state lifetime (≈0.2 s) of the ETM. It is named as long-lifetime triplet exciton reservoir effect. The systematic analysis reveals that the long triplet lifetime of ETM can compensate the requirement for high ET with the help of endothermic energy transfer. Such combination of low ET and long lifetime provides equivalent exciton confinement effect and high molecular stability simultaneously. It offers a novel molecular design paradigm for breaking the dilemma between high efficiency and prolonged operational lifetime in OLEDs.

8.
ACS Appl Mater Interfaces ; 16(3): 4099-4107, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189255

RESUMO

To address the toxicity and stability issues of traditional lead halide perovskite solar cells (PSCs), the development of lead-free PSCs, such as Cs2AgBiBr6 solar cells, is of great significance. However, due to the low defect formation energy of Cs2AgBiBr6, a large number of vacancies, including A-site vacancies and X-site vacancies, form during the fabrication process of the Cs2AgBiBr6 film, which seriously damage the performance of the devices. The traditional phenylethylammonium (PEA) cation, mainly focusing on passivating A-site vacancies, is incapable of reducing X-site vacancies and so results in a limited performance improvement in Cs2AgBiBr6 solar cells. Herein, inspired by the capability of the Lewis base to coordinate with metal cations, a series of N-heterocyclic amines are introduced to serve as a dual-site passivator, reducing A-site and X-site vacancies at the same time. The highest power conversion efficiency of modified Cs2AgBiBr6 solar cells has been increased 36% from 1.10 to 1.50%. Further investigation reveals that the higher electron density of additives would lead to a stronger interaction with metal cations like Ag+ and Bi3+, thus reducing more X-site defects and improving carrier dynamics. Our work provides a strategy for passivating perovskite with various kinds of defects and reveals the connection between the coordination capability of additives and device performance enhancement, which could be instructive in improving the performance of lead-free PSCs.

9.
Chem Soc Rev ; 53(4): 1769-1788, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269613

RESUMO

The emerging perovskite solar cell (PSC) technology has attracted significant attention due to its superior power conversion efficiency (PCE) among the thin-film photovoltaic technologies. However, the toxicity of lead and poor stability of lead halide materials hinder their commercialization. In this case, after a decade of effort, various categories of lead-free perovskites and perovskite-like materials have been developed, including tin halide perovskites, double perovskites, defect-structured perovskites, and rudorffites. However, the performance of the corresponding devices still falls short of expectations, especially their PCE. The limitations mainly originate from either the unstable lattice structure of these materials, which causes the distortion of their octahedra, or their low dimensionality (e.g., structural and electronic dimensionality)-correlated poor carrier transport and self-trapping effect, accelerating nonradiative recombination. Therefore, understanding the relationship between the structures and performance in these emerging candidates and leveraging these insights to design or modify new lead-free perovskites is of great significance. Herein, we review the variety of dimensionalities in different categories of lead-free perovskites and perovskite-like materials and conclude that dimensionality is an important aspect among the crucial indexes that determine the performance of lead-free PSCs. In addition, we summarize the modulation of both structural and electronic dimensionality, and the corresponding enhanced optoelectronic properties in different categories. Finally, perspectives on the future development of lead-free perovskites and perovskite-like materials for photovoltaic applications are provided. We hope that this review will provide researchers with a concise overview of these emerging materials and help them leverage dimensionality to break the bottleneck in photovoltaic applications.

10.
Plant Physiol Biochem ; 205: 108159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944244

RESUMO

Trehalose (Tre) plays a vital role in response to drought stress in plants but its regulatory mechanism remains unclear. Here, this study explores the mechanism of re-regulated drought tolerance during cucumber adventitious root formation. Our results indicate that 2 mM Tre displays remarkable drought alleviation in the aspect of root number, root length, fresh weight, and dry weight. Under drought stress, Tre could inhibit greatly the MDA, H2O2, and O2- accumulation, enhance obviously the activities of SOD, POD, and CAT enzymes and up-regulate significantly the transcript levels of SOD, POD, and CAT genes. Furthermore, Tre treatment also promotes Tre metabolism during drought stress: significantly increases starch and Tre contents and decreases glucose content, the biosynthesis enzymatic activity of the Tre metabolic pathway including TPS and TPP are enhanced and the activity of degradation enzyme THL is decreased, and corresponding genes TPS1, TPS2, TPPA, and TPPB are up-regulated. Tre significantly reversed the decrease caused by PEG in IAA, ethylene, ABA, and BR contents and the increase caused by PEG in GA3 and KT contents. Collectively, Tre appears to be the effective treatment in counteracting the negative effects of drought stress during adventitious root formation by regulating ROS, Tre metabolisms and plant hormones.


Assuntos
Cucumis sativus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Espécies Reativas de Oxigênio , Trealose/metabolismo , Secas , Peróxido de Hidrogênio , Superóxido Dismutase , Estresse Fisiológico
11.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

12.
Adv Mater ; 35(49): e2305382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672560

RESUMO

Nanocrystal-based light-emitting diodes (Nc-LEDs) have immense potential for next-generation high-definition displays and lighting applications. They offer numerous advantages, such as low cost, high luminous efficiency, narrow emission, and long lifetime. However, the external quantum efficiency (EQE) of Nc-LEDs, typically employing isotropic nanocrystals, is limited by the out-coupling factor. Here efficient, bright, and long lifetime red Nc-LEDs based on anisotropic nanocrystals of colloidal quantum wells (CQWs) are demonstrated. Through modification of the substrate's surface properties and control of the interactions among CQWs, a self-assembled layer with an exceptionally high distribution of in-plane transitions dipole moment of 95%, resulting in an out-coupling factor of 37% is successfully spin-coated. The devices exhibit a remarkable peak EQE of 26.9%, accompanied by a maximum brightness of 55 754 cd m-2 and a long operational lifetime (T95 @100 cd m-2 ) over 15 000 h. These achievements represent a significant advancement compared to previous studies on Nc-LEDs incorporating anisotropic nanocrystals. The work is expected to provide a general self-assembly strategy for enhancing the light extraction efficiency of Nc-LEDs based on anisotropic nanocrystals.

13.
ACS Appl Mater Interfaces ; 15(30): 36716-36723, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477401

RESUMO

Tin-based perovskites comprise one of the preferred nontoxic alternatives to Pb-based perovskites due to their desirable optoelectronic properties. However, there remains a crucial stability problem due to the property of Sn2+ oxidation. In this study, we reported stable tin-based perovskite nanocrystals (NCs) using stannous acetate as the Sn2+ source because of its stronger Sn-O bonding. To prevent the oxidation of Sn2+, a thin layer of CsBr coverage was formed in situ; tin-based perovskite NCs, CsxSnBrx+2@CsBr (1 < x < 4), show a high photoluminescence quantum yield (PLQY) of 78.2% and high stability. The measured lifetime of PLQY decrease to half of the initial value is ∼1287 h under ambient conditions and ∼2200 h under a nitrogen atmosphere, respectively. Furthermore, the as-fabricated light-emitting diodes based on CsxSnBrx+2@CsBr NCs as the emitting layer exhibit a maximum luminescence of 16 cd/m2 and an external quantum efficiency of 0.035% with peaks at 451 and 615 nm, corresponding to the emissions of CsBr and CsxSnBrx+2, respectively. This work provided a new way to obtain stable Sn-based perovskite NCs and exhibited their potential for application in white light-emitting diodes (LEDs).

14.
J Phys Chem Lett ; 14(23): 5310-5317, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272672

RESUMO

The toxicity of lead-based halide perovskites hampers broad application in optoelectronics. The lead-free perovskite Cs2AgBiBr6 is considered a promising candidate, owing to its long carrier lifetime and outstanding stability. However, the relatively large bandgap hinders its absorption in the visible region and thus the application of its photoelectric properties in the visible and near-infrared (NIR) regions. Therefore, the expansion of absorption to the longer wavelengths, even the NIR region, makes sense for solar cells and photodetector applications. Facile elemental doping or substitution of Cs2AgBiBr6 makes it potentially desirable for applications in both visible and NIR regions. As a result, band-edge adjustment to expand the absorption onset or trace deep-energy-level doping with a new intermediate band was achieved. Here, we summarize the elemental doping results and review the potential application of Cs2AgBiBr6 from these two aspects and give constructive perspectives for further development of lead-free perovskite.

15.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298477

RESUMO

Melatonin (MT) and nitric oxide (NO) act as signaling molecules that can enhance cadmium (Cd) stress resistance in plants. However, little information is available about the relationship between MT and NO during seedling growth under Cd stress. We hypothesize that NO may be involved in how MT responds to Cd stress during seedling growth. The aim of this study is to evaluate the relationship and mechanism of response. The results indicate that different concentrations of Cd inhibit the growth of tomato seedlings. Exogenous MT or NO promotes seedling growth under Cd stress, with a maximal biological response at 100 µM MT or NO. The promotive effects of MT-induced seedling growth under Cd stress are suppressed by NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO may be involved in MT-induced seedling growth under Cd stress. MT or NO decreases the content of hydrogen peroxide (H2O2), malonaldehyde (MDA), dehydroascorbic acid (DHA), and oxidized glutathione (GSSG); improves the content of ascorbic acid (AsA) and glutathione (GSH) and the ratios of AsA/DHA and GSH/GSSG; and enhances the activities of glutathione reductase (GR), monodehydroascorbic acid reductase (MDHAR), dehydroascorbic acid reductase (DHAR), ascorbic acid oxidase (AAO), and ascorbate peroxidase (APX) to alleviate oxidative damage. Moreover, the expression of genes associated with the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species (ROS) are up-regulated by MT or NO under Cd conditions, including AAO, AAOH, APX1, APX6, DHAR1, DHAR2, MDHAR, and GR. However, NO scavenger cPTIO reverses the positive effects regulated by MT. The results indicate that MT-mediated NO enhances Cd tolerance by regulating AsA-GSH cycle and ROS metabolism.


Assuntos
Melatonina , Solanum lycopersicum , Antioxidantes/farmacologia , Melatonina/farmacologia , Melatonina/metabolismo , Plântula/metabolismo , Cádmio/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Ácido Desidroascórbico/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Oxirredutases/metabolismo
16.
Adv Mater ; 35(33): e2301114, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314026

RESUMO

Colloidal perovskite nanocrystals (PNCs) display bright luminescence for light-emitting diode (LED) applications; however, they require post-synthesis ligand exchange that may cause surface degradation and defect formation. In situ-formed PNCs achieve improved surface passivation using a straightforward synthetic approach, but their LED performance at the green wavelength is not yet comparable with that of colloidal PNC devices. Here, it is found that the limitations of in situ-formed PNCs stem from uncontrolled formation kinetics: conventional surface ligands confine perovskite nuclei but fail to delay crystal growth. A bifunctional carboxylic-acid-containing ammonium hydrobromide ligand that separates crystal growth from nucleation is introduced, leading to the formation of quantum-confined PNC solids exhibiting a narrow size distribution. Controlled crystallization is further coupled with defect passivation using deprotonated phosphinates, enabling improvements in photoluminescence quantum yield to near unity. Green LEDs are fabricated with a maximum current efficiency of 109 cd A-1 and an average external quantum efficiency of 22.5% across 25 devices, exceeding the performance of their colloidal PNC-based counterparts. A 45.6 h operating half-time is further documented for an unencapsulated device in N2 with an initial brightness of 100 cd m-2 .

17.
Front Oncol ; 13: 1153241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274239

RESUMO

Introduction: Leveraging deep learning in the radiology community has great potential and practical significance. To explore the potential of fitting deep learning methods into the current Liver Imaging Reporting and Data System (LI-RADS) system, this paper provides a complete and fully automatic deep learning solution for the LI-RADS system and investigates its model performance in liver lesion segmentation and classification. Methods: To achieve this, a deep learning study design process is formulated, including clinical problem formulation, corresponding deep learning task identification, data acquisition, data preprocessing, and algorithm validation. On top of segmentation, a UNet++-based segmentation approach with supervised learning was performed by using 33,078 raw images obtained from 111 patients, which are collected from 2010 to 2017. The key innovation is that the proposed framework introduces one more step called feature characterization before LI-RADS score classification in comparison to prior work. In this step, a feature characterization network with multi-task learning and joint training strategy was proposed, followed by an inference module to generate the final LI-RADS score. Results: Both liver segmentation and feature characterization models were evaluated, and comprehensive statistical analysis was conducted with detailed discussions. Median DICE of liver lesion segmentation was able to achieve 0.879. Based on different thresholds, recall changes within a range of 0.7 to 0.9, and precision always stays high greater than 0.9. Segmentation model performance was also evaluated on the patient level and lesion level, and the evaluation results of (precision, recall) on the patient level were much better at approximately (1, 0.9). Lesion classification was evaluated to have an overall accuracy of 76%, and most mis-classification cases happen in the neighboring categories, which is reasonable since it is naturally difficult to distinguish LI-RADS 4 from LI-RADS 5. Discussion: In addition to investigating the performance of the proposed model itself, extensive comparison experiment was also conducted. This study shows that our proposed framework with feature characterization greatly improves the diagnostic performance which also validates the effectiveness of the added feature characterization step. Since this step could output the feature characterization results instead of simply generating a final score, it is able to unbox the black-box for the proposed algorithm thus improves the explainability.

18.
Antioxidants (Basel) ; 12(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37237909

RESUMO

Strigolactones (SLs), as a new phytohormone, regulate various physiological and biochemical processes, and a number of stress responses, in plants. In this study, cucumber 'Xinchun NO. 4' is used to study the roles of SLs in seed germination under salt stress. The results show that the seed germination significantly decreases with the increase in the NaCl concentrations (0, 1, 10, 50, and 100 mM), and 50 mM NaCl as a moderate stress is used for further analysis. The different concentrations of SLs synthetic analogs GR24 (1, 5, 10, and 20 µM) significantly promote cucumber seed germination under NaCl stress, with a maximal biological response at 10 µM. An inhibitor of strigolactone (SL) synthesis TIS108 suppresses the positive roles of GR24 in cucumber seed germination under salt stress, suggesting that SL can alleviate the inhibition of seed germination caused by salt stress. To explore the regulatory mechanism of SL-alleviated salt stress, some contents, activities, and genes related to the antioxidant system are measured. The malondialdehyde (MDA), H2O2, O2-, and proline contents are increased, and the levels of ascorbic acid (AsA) and glutathione (GSH) are decreased under salt stress conditions, while GR24 treatment reduces MDA, H2O2, O2-, and proline contents, and increases AsA and GSH contents during seed germination under salt stress. Meanwhile, GR24 treatment enhances the decrease in the activities of antioxidant enzymes caused by salt stress [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)], following which antioxidant-related genes SOD, POD, CAT, APX, and GRX2 are up-regulated by GR24 under salt stress. However, TIS108 reversed the positive effects of GR24 on cucumber seed germination under salt stress. Together, the results of this study revealed that GR24 regulates the expression levels of genes related to antioxidants and, therefore, regulates enzymatic activity and non-enzymatic substances and enhances antioxidant capacity, alleviating salt toxicity during seed germination in cucumber.

19.
Front Plant Sci ; 14: 1130669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875578

RESUMO

The fruit peel color is an important factor that affects its quality. However, genes involved in regulating pericarp color in bottle gourd (Lagenaria siceraria) have not been explored to date. Genetic analysis of color traits in bottle gourd peel through a genetic population of six generations demonstrated that the green color of peels is inherited as a single gene dominant trait. Combined phenotype-genotype analysis of recombinant plants using BSA-seq mapped the candidate gene to a 22.645 Kb interval at the head end of chromosome 1. We observed that the final interval contained only one gene, LsAPRR2 (HG_GLEAN_10010973). Sequence and spatiotemporal expression analyses of LsAPRR2 unraveled two nonsynonymous mutations (A→G) and (G→C) in the parental CDS sequences. Further, LsAPRR2 expression was higher in all green-skinned bottle gourds (H16) at various stages of fruit development than in white-skinned bottle gourds (H06). Cloning and sequence comparison of the two parental LsAPRR2 promoter regions indicated 11 bases insertion and 8 SNPs mutations in the region -991~-1033, upstream of the start codon in white bottle gourd. Proof of GUS reporting system, Genetic variation in this fragment significantly reduced the expression of LsAPRR2 in the pericarp of white bottle gourd. In addition, we developed a tightly linked (accuracy 93.88%) InDel marker for the promoter variant segment. Overall, the current study provides a theoretical basis for comprehensive elucidation of the regulatory mechanisms underlying the determination of bottle gourd pericarp color. This would further help in the directed molecular design breeding of bottle gourd pericarp.

20.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834473

RESUMO

Rind color is an economically important agronomic trait in eggplant that impacts consumer preferences. In this study, bulked segregant analysis and competitive allele-specific PCR were employed to identify the candidate gene for eggplant rind color through constructing a 2794 F2 population generated from a cross between "BL01" (green pericarp) and "B1" (white pericarp). Genetic analysis of rind color revealed that a single dominant gene controls green color of eggplant peel. Pigment content measurement and cytological observations demonstrated that chlorophyll content and chloroplast number in BL01 were higher than in B1. A candidate gene (EGP19168.1) was fine-mapped to a 20.36 Kb interval on chromosome 8, which was predicted to encode the two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2). Subsequently, allelic sequence analysis revealed that a SNP deletion (ACT→AT) in white-skinned eggplant led to a premature termination codon. Genotypic validation of 113 breeding lines using the Indel marker closely linked to SmAPRR2 could predict the skin color (green/white) trait with an accuracy of 92.9%. This study will be valuable for molecular marker-assisted selection in eggplant breeding and provides theoretical foundation for analyzing the formation mechanism of eggplant peel color.


Assuntos
Solanum melongena , Mapeamento Cromossômico , Solanum melongena/genética , Melhoramento Vegetal , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...