Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986054

RESUMO

As an efficient alternative copper (Cu) source, copper nanoparticles (nano-Cu) have been widely supplemented into animal-producing food. Therefore, it is necessary to assess the effect of nano-Cu exposure on the biological health risk. Recently, the toxic effects of nano-Cu have been confirmed but the underlying mechanism remains unclear. This study reveals the impact of nano-Cu on endoplasmic reticulum autophagy (ER-phagy) in chicken hepatocytes and further identifies Drp1 and its downstream gene FAM134B as crucial regulators of nano-Cu-induced hepatotoxicity. Nano-Cu exposure can induce Cu ion overaccumulation and pathological injury in the liver, trigger excessive mitochondrial fission and mitochondria-associated membrane (MAM) integrity damage, and activate ER-phagy in vivo and in vitro. Interestingly, the knockdown of Drp1 markedly decreases the expression of FAM134B induced by nano-Cu. Furthermore, the expression levels of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I induced by nano-Cu exposure are decreased by inhibiting the expression of Drp1. Simultaneously, the inhibition of FAM134B effectively alleviates nano-Cu-induced ER-phagy by downregulating the expression of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I. Overall, these results suggest that Drp1-mediated impairment of MAM integrity leads to ER-phagy as a novel molecular mechanism involved in the regulation of nano-Cu-induced hepatotoxicity. These findings provide new ideas for future research on the mechanism of nano-Cu-induced hepatotoxicity.

2.
J Agric Food Chem ; 72(28): 15948-15958, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965774

RESUMO

Copper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity. Here, we observed that Cu exposure resulted in Cu accumulation and pathological injury in chicken livers. Moreover, we found that Cu exposure caused mitochondrial-dependent ferroptosis in chicken hepatocytes, which were prominent on the increased mitochondrial Fe2+ and mitochondrial lipid peroxidation, inhibited levels of CISD1, GPX4, DHODH, and IDH2, and also enhanced level of PTGS2. Notably, we identified that inhibition of mitomiR-2954 level effectively mitigated Cu-exposure-resulted mitochondrial Fe2+ accumulation and mitochondrial lipid peroxidation and prevented the development of mitochondrial-dependent ferroptosis. However, increasing the mitomiR-12294-5p expression considerably aggravated the influence of Cu on these indicators. Meanwhile, the overexpression of CISD1 effectively alleviated Cu-caused mitochondrial-dependent ferroptosis, while silent CISD1 eliminated the therapeutic role of mitomiR-12294-5p inhibitor. Overall, our findings indicated that mitomiR-12294-5p/CISD1 axis played a critical function in Cu-caused hepatotoxicity in chickens by regulating mitochondrial-dependent ferroptosis.


Assuntos
Galinhas , Cobre , Ferroptose , Hepatócitos , MicroRNAs , Mitocôndrias , Animais , Galinhas/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Ferroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Poult Sci ; 103(9): 104011, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991386

RESUMO

Exposure to copper (Cu) has been associated with metabolic disorders in animals and humans, but the underlying mechanism remains unclear. One-day-old broiler chickens, numbering a total of 192, were nourished with dietary intakes that contained varying concentrations of Cu, specifically 11, 110, 220, and 330 mg/kg of Cu, for a period extending over a duration of 7 wk. As a result of the study, Cu exposure resulted in vacuolization, fragmentation of mitochondria cristae, and the increase of autophagosomes in hepatocytes. Metabolomics analysis illustrated that Cu caused a total of 59 different metabolites in liver, predominantly associated with the glycerophospholipid metabolic pathway, leading to metabolic disruption. Moreover, high-Cu diet markedly reduced the levels of AMPKα1, p-AMPKα1, mTOR, and p-mTOR and enhanced the expression levels of the autophagy-related factors (Atg5, Dynein, Beclin1, and LC3-II). Overall, Cu exposure caused chicken liver injury and resulted in disturbed metabolic processes and mediated autophagy primarily through the AMPK-mTOR axis.

4.
J Hazard Mater ; 467: 133703, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354437

RESUMO

As an environmental pollution metal, copper (Cu) exposure-induced toxicity is closely related to mitochondrial damage. Mitochondrial-derived vesicles (MDVs) plays an essential role in mitochondrial quality control and cellular metabolism. However, the mechanism by which MDVs are involved in cellular metabolism under Cu exposure remains unclear. Here, the MDV-carrying protein MIGA2 was identified as a crucial molecule involved in the Cu-induced autophagosomes-lysosomes fusion. Furthermore, Cu exposure significantly promoted MDVs secretion, accompanied by a markedly increased MIGA2 expression in MDVs, as well as accelerated the autophagosomes-lysosomes fusion. However, small RNA interference of SNX9 (the MDVs secretion inductor) and MIGA2 blocked autophagic flux induced by Cu, leading to failure of autophagosomes degradation. Co-immunoprecipitation assay further demonstrated that ATG14 was a regulation target protein of MIGA2. Overexpression and knockdown of ATG14 significantly affected the autophagosomes-lysosomes fusion induced by Cu. Meanwhile, knockdown of ATG14 dramatically reversed the effect of MIGA2-overexpression in promoting autophagosomes-lysosomes fusion, while overexpression of ATG14 shows the opposite effect. These results demonstrated that MDVs-carrying MIGA2 protein promoted autophagosomes-lysosomes fusion induced by Cu. This study demonstrated that MDVs is involved in regulating organelles-to-organelles communication, providing a new insight into the toxicity mechanism of Cu exposure on hepatocytes.


Assuntos
Cobre , Proteínas Mitocondriais , Cobre/toxicidade , Autofagossomos , Mitocôndrias , Fatores de Transcrição , Lisossomos
5.
Res Sq ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260360

RESUMO

Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.

6.
Sci Total Environ ; 913: 169642, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159754

RESUMO

Terbuthylazine (TBA) is a widely prevalent pesticide pollutant, which is a global concern due to its environmental residual. However, the toxic mechanism of TBA have not been fully solved. Here, we explored that TBA exposure disrupts the intestinal flora and aggravated disturbance of mitochondrial quality control and PANapoptosis in hepatocytes via gut-liver axis. Our findings demonstrated that TBA exposure induced significant damage to the jejunum barrier, evidenced by a marked decrease in the expression of Occludin and ZO-1. Moreover. TBA led to intestinal microflora disorder, manifested as the decreased abundance of Firmicutes, and increased abundance of the Nitrospirota, Chloroflexi, Desulfobacterota, Crenarchaeota, Myxococcota, and Planctomycetota. Meanwhile, intestinal microflora disorder affected the biological processes of lipid metabolism and cell growth and death of hepatocytes by RNA-Seq analysis. Furthermore, TBA could induced mitochondrial quality control imbalance, including mitochondrial redox disorders, lower activity of mitochondrial fusion and biogenesis decrease, and increasing level of mitophagy. Subsequently, TBA significantly increased expression levels of pyroptosis, apoptosis and necroptosis-related proteins. In general, these results demonstrated the underlying mechanisms of TBA-induced hepatotoxicity induced via the gut-liver axis, which provides a theoretical basis for further research of ecotoxicology of TBA.


Assuntos
Microbioma Gastrointestinal , Triazinas , Animais , Galinhas , Fígado/metabolismo , Hepatócitos
7.
Reprod Health ; 20(1): 161, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907929

RESUMO

BACKGROUND: Several studies have provided evidence about adverse pregnancy outcomes of nurses involved in occupational exposure. However, the pregnancy outcomes among nurses in middle-income countries are not well demonstrated. The main aim of this study is to present the prevalence and influencing factors of pregnancy outcomes among female nurses in China. METHODS: We included 2243 non-nurse health care workers, and 4230 nurses in this national cross-sectional study in China. Information on occupational exposures and pregnancy outcomes was collected using a face-to-face investigation. Odds ratios (ORs) were estimated through logistic regression. RESULTS: The proportion of threatened abortion, spontaneous abortion, and stillbirth of female nurses was 2.6%, 7%, and 2.1%, respectively. We found an increased risk of threatened abortion among nurses with overtime work (OR = 1.719, 95% CI 1.158-2.550). The risk of threatened abortion and spontaneous abortion was elevated among nurses handling disinfectant (OR = 2.293 and 1.63, respectively). We found a nearly twofold increased risk of premature birth (OR = 2.169, 95% CI 1.36-3.459) among nurses handling anti-cancer drugs. CONCLUSIONS: Our findings suggested that maternal occupational exposures might be associated with the risk of adverse pregnancy outcomes among female nurses in China. We recommend that policy-markers and hospital managers work together to reduce exposure to occupational hazards and improve pregnancy outcomes among female nurses.


Assuntos
Exposição Materna , Enfermagem , Exposição Ocupacional , Feminino , Humanos , Gravidez , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/etiologia , Ameaça de Aborto , Estudos Transversais , População do Leste Asiático/estatística & dados numéricos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Resultado da Gravidez/epidemiologia , China , Enfermagem/estatística & dados numéricos , Exposição Materna/efeitos adversos , Exposição Materna/estatística & dados numéricos
8.
Ecotoxicol Environ Saf ; 266: 115542, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801897

RESUMO

Arsenic (As) and copper (Cu) are two common contaminants in the environment. When organisms are exposed to As or/ and Cu in large quantities or for sustained periods, oxidative stress is induced, adversely affecting kidney function. However, the molecular mechanisms involved in As or/ and Cu-induced nephrotoxicity remain elusive. In this experiment, wild-type C57BL/6 and Nrf2-knockout mice (n = 24 each) were exposed to arsenic trioxide and copper chloride alone or in combination. Our research findings indicate that exposure to As or/ and Cu can activate the Nrf2 antioxidant pathway by upregulating the levels of Nrf2, HO-1, CAT, and downregulating the level of Keap1, thereby reducing As or/ and Cu-induced oxidative stress. Meanwhile, exposure induced kidney cell pyroptosis and apoptosis by promoting the expression of NLRP3 inflammasomes and Caspase-3, which peaked in mice co-treated with As and Cu. Subsequently, we investigated its role in As or/ and Cu-induced kidney injury by knocking out Nrf2. Our results show that after knocking out Nrf2, the expression of antioxidant factors CAT and HO-1 significantly decreased. Based on the low antioxidant capacity after Nrf2 knockout, the levels of NLRP3 inflammasome, GSDMD, and Caspase1 were significantly upregulated after exposure to As and Cu, indicating more severe cellular pyroptosis. In addition, the level of Caspase3-mediated apoptosis was also more severe. Taken together, there is crosstalk between Nrf2-mediated antioxidant capacity and apoptosis/ pyroptosis induced by exposure to As or/ and Cu. Depletion of Nrf2 alters its antioxidant capacity, ultimately leading to more severe apoptosis, pyroptosis, and nephrotoxicity.


Assuntos
Apoptose , Arsênio , Cobre , Animais , Camundongos , Antioxidantes/metabolismo , Arsênio/metabolismo , Cobre/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Piroptose
9.
Sci Total Environ ; 905: 167315, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742962

RESUMO

Copper (Cu) is pollution metal that is a global concern due to its toxic effects. A recent study found that the release of mitochondrial DNA (mtDNA) into the cytoplasm can activate the innate immune response, but the exact mechanisms underlying the effect of Cu exposure remains unknown. In this study, we identified that the reduction in transcription Factor A (TFAM) led to mtDNA leakage into the cytoplasm under Cu exposure in hepatocytes, accompanied by the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway-mediated innate immunity (increased expression of cGAS, STING, TANK-binding kinase-1 (TBK1), and interferon regulatory factor-3 (IRF3)) genes and proteins, and enhanced phosphorylation levels of TBK1 and IRF3). Subsequently, silencing TFAM (siTFAM) significantly aggravated mtDNA release and the innate immune response under Cu treatment. Mitochondrial DNA depletion alleviated Cu-induced innate immunity in hepatocytes, while mtDNA transfection further enhanced the innate immune response. Notably, the inhibition of STING effectively alleviated the phosphorylation levels of the TBK1 and IRF3 proteins induced by Cu, while the upregulation of STING aggravated the Cu-induced innate immunity. Furthermore, EtBr and H-151(a STING inhibitor) treatment dramatically reversed the effect of TFAM depletion on the sharpened innate immune response induced by Cu via the cGAS-STING pathway. In general, these findings demonstrated the TFAM deficiency promotes innate immunity by activating the mtDNA-cGAS-STING signalling pathway under Cu exposure in hepatocytes, providing new insight into Cu toxicology.


Assuntos
Proteínas Aviárias , Cobre , DNA Mitocondrial , Proteínas Mitocondriais , Fatores de Transcrição , Animais , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Cobre/toxicidade , Hepatócitos , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fatores de Transcrição/metabolismo
10.
Environ Pollut ; 336: 122474, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652230

RESUMO

Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.


Assuntos
Sulfato de Cobre , Cobre , Humanos , Masculino , Animais , Ratos , Cobre/toxicidade , Cobre/metabolismo , Sulfato de Cobre/farmacologia , Suplementos Nutricionais , Mitofagia , Ratos Sprague-Dawley , Cognição
11.
Food Chem Toxicol ; 179: 113950, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481227

RESUMO

Zinc (Zn) is a critical microelement for physiological process, but excess exposure can cause testicular dysfunction. However, the underlying mechanism of Zn-induced ferroptosis via regulating mitophagy is unknown. In this study, a total of 60 male weaned pigs were randomly divided into three groups and the content of Zn were 75 mg/kg (control), 750 mg/kg (Zn-I), 1500 mg/kg (Zn-II). Meanwhile, testicular cells were treated with ZnSO4 (0, 50 and 100 µM), and in combination of ZnSO4 (100 µM) and ferrostation-1, ML-210, or 3-methyladenine for 24 h. Our results verified that Zn could cause ferroptosis and lipid peroxidation, which were characterized by down-regulating level of SLC7A11, GPX4, and ferritin, and up-regulating levels of MDA, CD71, TF, and HMGB1 by Western blot, immunohistochemistry, immunofluorescence, peroxidase assay, et.ac. The opposite effect was shown after treatment with ferrostation-1 or ML-210. Meanwhile, the mitophagy-related proteins (PINK, Parkin, ATG5, LC3-II/LC3-I) were significantly upregulated in vivo and in vitro. Most importantly, 3-methyladenine observably relieved ferroptosis under Zn treatment through inhibiting mitophagy. Collectively, we demonstrated that mitophagy contributes to Zn-induced ferroptosis in porcine testis cells, providing a new insight into Zn toxicology.


Assuntos
Ferroptose , Zinco , Masculino , Animais , Suínos , Zinco/farmacologia , Testículo , Mitofagia , Peroxidação de Lipídeos
12.
Chem Biomed Imaging ; 1(4): 356-371, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37501792

RESUMO

Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.

13.
Vet Res Commun ; 47(4): 2027-2040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405676

RESUMO

Copper (Cu), an omnipresent environmental pollutant, can cause potential harm to the public and ecosystems. In order to study the cardiotoxicity caused by Cu, molecular biology techniques were used to analyze the effect of Cu on ER stress-mediated cardiac apoptosis. In vivo investigation, 240 1-day-old chickens were fed with Cu (11, 110, 220, and 330 mg/kg) diet for 7 weeks. The consequence showed that high-Cu can induce ER stress and apoptosis in heart tissue. The vitro experiments, the Cu treatment for 24 h could provoke ultrastructural damage and upregulate the apoptosis rate. Meanwhile, GRP78, GRP94, eIF2α, ATF6, XBP1, CHOP, Bax, Bak1, Bcl2, Caspase-12 and Caspase-3 genes levels, and GRP78, GRP94 and Caspase-3 proteins levels were increased, which indicated that ER stress and apoptosis in cardiomyocytes. But the mRNA level of Bcl2 were decreased after Cu exposure. Conversely, Cu-induced ER stress-mediated apoptosis can be alleviated by treatment with 4-PBA. These findings generally showed that Cu exposure can contribute to ER stress-mediated apoptosis in chicken myocardium, which clarifies the important mechanism link between ER stress and apoptosis, and provides a new perspective for Cu toxicology.


Assuntos
Galinhas , Cobre , Animais , Cobre/toxicidade , Galinhas/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Chaperona BiP do Retículo Endoplasmático , Ecossistema , Miocárdio/metabolismo , Apoptose , Miócitos Cardíacos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
14.
J Hazard Mater ; 458: 131908, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364438

RESUMO

Copper (Cu) is hazardous metal contaminant, which induced hepatotoxicity is closely related to mitochondrial disorder, but exact regulatory mechanism has not yet been revealed. Mitochondrial microRNAs (mitomiRs) are a novel and critical regulator of mitochondrial function and mitochondrial homeostasis. Hence, this study revealed the impact of Cu-exposure on mitomiR expression profiles in chicken livers, and further identified mitomiR-12294-5p and its target gene CISD1 as core regulators involved in Cu-induced hepatotoxicity. Additionally, our results showed that Cu-exposure induced mitochondrial oxidative damage, and mitochondrial quality control imbalance mediated by mitochondrial dynamics disturbances, mitochondrial biogenesis inhibition and abnormal mitophagy flux in chicken livers and primary chicken embryo hepatocytes (CEHs). Meaningfully, we discovered that inhibition of the expression of mitomiR-12294-5p effectively alleviated Cu-induced mitochondrial oxidative stress and mitochondrial quality control imbalance, while the up-regulation of mitomiR-12294-5p expression exacerbated Cu-induced mitochondrial damage. Simultaneously, the above Cu-induced mitochondrial damage can be effectively rescued by the overexpression of CISD1, while knockdown of CISD1 dramatically reverses the mitigating effect that inhibition of mitomiR-12294-5p expression on Cu-induced mitochondrial oxidative stress and mitochondrial quality control imbalance. Overall, these results suggested that mitomiR-12294-5p/CISD1 axis mediated mitochondrial damage is a novel molecular mechanism involved in regulating Cu-induced hepatotoxicity in chickens.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Embrião de Galinha , Animais , Cobre/metabolismo , Galinhas/metabolismo , Apoptose , Mitocôndrias , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
15.
Life Sci ; 322: 121656, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011874

RESUMO

AIMS: Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. Endoplasmic reticulum (ER) stress and pyroptosis play a critical role in the pathological process of DN, but their mechanism in DN has been litter attention. MAIN METHODS: Here, we firstly used large mammal beagles as DN model for 120 d to explored the mechanism of endoplasmic reticulum stress-mediated pyroptosis in DN. Meanwhile, 4-Phenylbutytic acid (4-PBA) and BYA 11-7082 were added in the MDCK (Madin-Daby canine kidney) cells by high glucose (HG) treatment. ER stress and pyroptosis related factors expression levels were analyzed by immunohistochemistry, immunofluorescence, western blotting, and quantitative real-time PCR assay. KEY FINDINGS: We identified that glomeruli atrophy, renal capsules were increased, and renal tubules thickened in diabetes. Masson and PAS staining resulted showed that the collagen fibers and glycogen were accumulated in kidney. Meanwhile, the ER stress and pyroptosis-related factors were significantly activated in vitro. Importantly, 4-PBA significantly inhibited the ER stress, which also alleviated the HG-induced pyroptosis in MDCK cells. Furthermore, BYA 11-7082 could reduce the expression levels of NLRP3 and GSDMD genes and proteins. SIGNIFICANCE: These data provide evidence for ER stress contributes to pyroptosis through NF-κΒ/ΝLRP3 pathway in canine type 1 diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Cães , Nefropatias Diabéticas/metabolismo , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
16.
Folia Microbiol (Praha) ; 68(3): 415-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36547806

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic bacterium that predominantly infects infants in developing countries. EPEC forms attaching and effacing (A/E) lesions on the apical surface of the small intestine, leading to diarrhea. The locus of enterocyte effacement (LEE) is both necessary and sufficient for A/E lesion morphogenesis by EPEC. Gene expression from this virulence determinant is controlled by an elaborate regulatory web that extends beyond protein-based transcriptional regulators and includes small regulatory RNA (sRNA) that exert their effects posttranscriptionally. To date, only 4 Hfq-dependent sRNAs-MgrR, RyhB, McaS, and Spot42-have been identified that affect the LEE of EPEC by diverse mechanisms and elicit varying regulatory outcomes. In this study, we demonstrate that the paralogous Hfq-dependent sRNAs OmrA and OmrB globally silence the LEE to diminish the ability of EPEC to form A/E lesions. Interestingly, OmrA and OmrB do not appear to directly target a LEE-encoded gene; rather, they repress transcription from the LEE1 promoter indirectly, by means of an as-yet-unidentified transcriptional factor that binds within 200 base pairs upstream of the transcription start site to reduce the expression of the LEE master regulator Ler, which, in turn, leads to reduced morphogenesis of A/E lesions. Additionally, OmrA and OmrB also repress motility in EPEC by targeting the 5' UTR of the flagellar master regulator, flhD.


Assuntos
Escherichia coli Enteropatogênica , Regiões Promotoras Genéticas , Fatores de Transcrição
17.
Maturitas ; 167: 46-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306666

RESUMO

OBJECTIVE: To identify occupational hazards associated with earlier onset of natural menopause. STUDY DESIGN: A national cross-sectional study was conducted to explore the reproductive health of Chinese female workers. The final sample size was 17,948. MAIN OUTCOME MEASURES: Participants completed a self-report instrument that recorded working conditions, chemical and physical agents in the occupational environment, socioeconomic factors, lifestyle, reproductive history, and occupational information. A Cox regression model was used to examine the association between each occupational hazard and onset of menopause. RESULTS: Abnormal workload (19.31 %), aromatic compounds (7.95 %), and noise (24.94 %) were the three most frequently self-reported occupational hazards in the three categories of working conditions, chemical agents, and physical agents, respectively. Abnormal workload (HR = 1.133, p = 0.038), noise (HR = 1.233, p < 0.001), and heat stress (HR = 1.178, p = 0.041) were associated with earlier age at natural menopause in the analyses of each hazard, after adjustment. Only noise (HR = 1.187, p = 0.003) remained statistically significant after including all possible occupational hazards. CONCLUSIONS: In a national survey of 17,948 female workers, this study investigated the association of age at natural menopause with multiple occupational hazards, some of which have not been addressed. Occupational noise was identified as a risk factor for reproductive senescence for the first time. However, further research is needed to confirm our findings.


Assuntos
Envelhecimento , Menopausa , Humanos , Feminino , Estudos Transversais , Fatores de Risco , Modelos de Riscos Proporcionais
18.
Cells ; 11(19)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36231040

RESUMO

The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.


Assuntos
Imageamento Tridimensional , Imagem Individual de Molécula , Imageamento Tridimensional/métodos , RNA , RNA Mensageiro/genética , Imagem Individual de Molécula/métodos
19.
Nucleus ; 13(1): 170-193, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35593254

RESUMO

The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte Ativo do Núcleo Celular , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Hazard Mater ; 422: 126899, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418838

RESUMO

Copper (Cu), a hazardous heavy metal, can lead to toxic effects on host physiology. Recently, specific mitochondria-localized miRNAs (mitomiRs) were shown to modulate mitochondrial function, but the underlying mechanisms remain undefined. Here, we identified mitomiR-1285 as an important molecule regulating mitochondrial dysfunction and mitophagy in jejunal epithelial cells under Cu exposure. Mitochondrial dysfunction and mitophagy were the important mechanisms of Cu-induced pathological damage in jejunal epithelial cells, which were accompanied by significant increase of mitomiR-1285 in vivo and in vitro. Knockdown of mitomiR-1285 significantly attenuated Cu-induced mitochondrial respiratory dysfunction, ATP deficiency, mitochondrial membrane potential reduction, mitochondrial reactive oxygen species accumulation, and mitophagy. Subsequently, bioinformatics analysis and luciferase reporter assay demonstrated that IDH2 was a direct target of mitomiR-1285. RNA interference of IDH2 dramatically reversed the effect that mitomiR-1285 knockdown relieved mitochondrial dysfunction and mitophagy induced by Cu, and the opposite effect was shown by overexpression of IDH2. Therefore, our results suggested that mitomiR-1285 aggravated Cu-induced mitochondrial dysfunction and mitophagy via suppressing IDH2 expression. These findings identified the important mechanistic connection between mitomiRs and mitochondrial metabolism under Cu exposure, providing a new insight into Cu toxicology.


Assuntos
MicroRNAs , Mitofagia , Animais , Cobre/toxicidade , Células Epiteliais , Mitocôndrias , Mitofagia/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...