Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 28(38): 5557-5572, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36304083

RESUMO

BACKGROUND: The thyroid-gut axis has a great influence on the maintenance of human health; however, we know very little about the effects of low-dose ionizing radiation (LDR) on thyroid hormone levels and gut microbiota composition. AIM: To investigate the potential effects of low-dose X-ray radiation to male C57BL/6J mice. METHODS: Peripheral blood was collected for enzyme-linked immunosorbent assay (ELISA), and stool samples were taken for 16S ribosomal RNA (rRNA) gene sequencing after irradiation. RESULTS: We found that LDR caused changes in thyroid stimulating hormone (TSH) levels in the irradiated mice, suggesting a dose-dependent response in thyroid function to ionizing radiation. No changes in the diversity and richness of the gut microbiota were observed in the LDR-exposed group in comparison to the controls. The abundance of Moraxellaceae and Enterobacteriaceae decreased in the LDR-exposed groups compared with the controls, and the Lachnospiraceae abundance increased in a dose-dependent manner in the radiated groups. And the abundances of uncultured_bacterium_g_Acinetobacter, uncultured_bacterium_ o_Mollicutes_RF39, uncultured_bacterium_g_Citrobacter, and uncultured_ bacterium_g_Lactococcus decreased in the radiated groups at the genus level, which showed a correlation with radiation exposure and diagnostic efficacy. Analysis of functional metabolic pathways revealed that biological metabolism was predicted to have an effect on functional activities, such as nucleotide metabolism, carbohydrate metabolism, and glycan biosynthesis and metabolism. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway annotation also suggested that changes in the gut microbiota were related to processing functions, including translation, replication and repair. CONCLUSION: LDR can change thyroid function and the gut microbiota, and changes in the abundances of bacteria are correlated with the radiation dose.


Assuntos
Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Animais , Glândula Tireoide , Camundongos Endogâmicos C57BL , Bactérias/genética , Clostridiales , RNA Ribossômico 16S/genética
2.
Hortic Res ; 7: 165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082971

RESUMO

Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.

3.
BMC Plant Biol ; 17(1): 130, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747179

RESUMO

BACKGROUND: TIR1-like proteins act as auxin receptors and play essential roles in auxin-mediated plant development processes. The number of auxin receptor family members varies among species. While the functions of auxin receptor genes have been widely studied in Arabidopsis, the distinct functions of cucumber (Cucumis sativus L.) auxin receptors remains poorly understood. To further our understanding of their potential role in cucumber development, two TIR1-like genes were identified and designated CsTIR1 and CsAFB2. In the present study, tomato (Sonanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of CsTIR1 and CsAFB2. RESULTS: Differences in the subcellular localizations of CsTIR1 and CsAFB2 were identified and both genes were actively expressed in leaf, female flower and young fruit tissues of cucumber. Moreover, CsTIR1- and CsAFB2-overexpressing lines exhibited pleotropic phenotypes ranging from leaf abnormalities to seed germination and parthenocarpic fruit compared with the wild-type plants. To further elucidate the regulation of CsTIR1 and CsAFB2, the role of the miR393/TIR1 module in regulating cucumber fruit set were investigated. Activation of miR393-mediated mRNA cleavage of CsTIR1 and CsAFB2 was revealed by qPCR and semi-qPCR, which highlighted the critical role of the miR393/TIR1 module in mediating fruit set development in cucumber. CONCLUSION: Our results provide new insights into the involvement of CsTIR1 and CsAFB2 in regulating various phenotype alterations, and suggest that post-transcriptional regulation of CsTIR1 and CsAFB2 mediated by miR393 is essential for cucumber fruit set initiation. Collectively, these results further clarify the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , MicroRNAs/fisiologia , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia , Sementes/crescimento & desenvolvimento , Cucumis sativus/genética , Proteínas F-Box/fisiologia , Frutas/genética , Expressão Gênica , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Morfogênese , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...