Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937853

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Assuntos
Trifosfato de Adenosina , Conexinas , Gluconeogênese , Lipogênese , Fígado , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Camundongos , Gluconeogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos Knockout , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Citocinas
3.
BMC Genomics ; 13: 135, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500940

RESUMO

BACKGROUND: Miniature inverted repeat transposable element (MITE) is one type of transposable element (TE), which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. RESULTS: We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing). This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD) analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs) or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE) were identified only in regenerated plantlets. CONCLUSIONS: It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.


Assuntos
Diferenciação Celular/genética , Elementos de DNA Transponíveis/genética , Sequências Repetidas Invertidas/genética , Repetições Minissatélites/genética , Oryza/citologia , Oryza/genética , Sequência de Bases , Diferenciação Celular/efeitos da radiação , Sequência Conservada/genética , Técnicas de Cultura , Evolução Molecular , Raios gama , Germinação/genética , Germinação/efeitos da radiação , Íntrons/genética , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Plântula/citologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...