Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 52(1): 49, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811444

RESUMO

BACKGROUND: Edwardsiella tarda causes acute symptoms with ascites in Japanese flounder (Paralichthys olivaceus) and is a major problem for China's aquaculture sector. Genomic selection (GS) has been widely adopted in breeding industries because it shortens generation intervals and results in the selection of individuals that have great breeding potential with high accuracy. Based on an artificial challenge test and re-sequenced data of 1099 flounders, the aims of this study were to estimate the genetic parameters of resistance to E. tarda in Japanese flounder and to evaluate the accuracy of single-step GBLUP (ssGBLUP), weighted ssGBLUP (WssGBLUP), and BayesB for improving resistance to E. tarda by using three subsets of pre-selected single nucleotide polymorphisms (SNPs). In addition, SNPs that are associated with this trait were identified using a single-SNP genome-wide association study (GWAS) and WssGBLUP. RESULTS: We estimated a heritability of 0.13 ± 0.02 for resistance to E. tarda in Japanese flounder. One million SNPs at fixed intervals were selected from 4,978,724 SNPs that passed quality controls. GWAS identified significant SNPs on chromosomes 14 and 24. WssGBLUP revealed that the putative quantitative trait loci on chromosomes 1 and 14 contained SNPs that explained more than 1% of the genetic variance. Three 50 k-SNP subsets were pre-selected based on different criteria. Compared with pedigree-based prediction (ABLUP), the three genomic methods evaluated resulted in at least 7.7% greater accuracy of predictions. The accuracy of these genomic prediction methods was almost unchanged when pre-selected trait-related SNPs were used for prediction. CONCLUSIONS: Resistance to E. tarda in Japanese flounder has a low heritability. GWAS and WssGBLUP revealed that the genetic architecture of this trait is polygenic. Genomic prediction of breeding values performed better than ABLUP. It is feasible to implement genomic selection to increase resistance to E. tarda in Japanese flounder with 50 k SNPs. Based on the criteria used here, pre-selection of SNPs was not beneficial and other criteria for pre-selection should be considered.


Assuntos
Cruzamento/métodos , Resistência à Doença , Infecções por Enterobacteriaceae/genética , Doenças dos Peixes/genética , Linguado/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Cromossomos/genética , Edwardsiella tarda/patogenicidade , Infecções por Enterobacteriaceae/veterinária , Linguado/microbiologia , Linhagem , Locos de Características Quantitativas , Característica Quantitativa Herdável
2.
Genet Sel Evol ; 48: 15, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895843

RESUMO

BACKGROUND: Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored. METHODS: This simulation study investigated how much predictive ability is gained by using WGS data under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, with emphasis on divergent dairy cattle breeds with small populations. The relative performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection method with a mixture of two normal distributions (MixP) were also evaluated. Genomic predictions were based on within-population, across-population, and multi-breed reference populations. RESULTS: The use of WGS data for within-population predictions resulted in small to large increases in accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL densities, and time of divergence between populations) with a combined reference population and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL density increased to 132 QTL/Morgan. CONCLUSIONS: Our results show that, genomic predictions in numerically small cattle populations would benefit from a combination of WGS data, a multi-breed reference population, and a variable selection method.


Assuntos
Bovinos/genética , Genômica/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Cruzamento , Simulação por Computador , Modelos Estatísticos , Fenótipo , Locos de Características Quantitativas
3.
Genet Sel Evol ; 46: 64, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25284459

RESUMO

BACKGROUND: Genomic prediction is based on the accurate estimation of the genomic relationships among and between training animals and selection candidates in order to obtain accurate estimates of the genomic estimated breeding values (GEBV). Various methods have been used to predict GEBV based on population-wide linkage disequilibrium relationships (G IBS ) or sometimes on linkage analysis relationships (G LA ). Here, we propose a novel method to predict GEBV based on a genomic relationship matrix using runs of homozygosity (G ROH ). Runs of homozygosity were used to derive probabilities of multi-locus identity by descent chromosome segments. The accuracy and bias of the prediction of GEBV using G ROH were compared to those using G IBS and G LA . Comparisons were performed using simulated datasets derived from a random pedigree and a real pedigree of Italian Brown Swiss bulls. The comparison of accuracies of GEBV was also performed on data from 1086 Italian Brown Swiss dairy cattle. RESULTS: Simulations with various thresholds of minor allele frequency for markers and quantitative trait loci showed that G ROH achieved consistently more accurate GEBV (0 to 4% points higher) than G IBS and G LA . The bias of GEBV prediction for simulated data was higher based on the real pedigree than based on a random pedigree. In the analyses with real data, G ROH and G LA had similar accuracies. However, G LA achieved a higher accuracy when the prediction was done on the youngest animals. The G IBS matrices calculated with and without standardized marker genotypes resulted in similar accuracies. CONCLUSIONS: The present study proposes G ROH as a novel method to estimate genomic relationship matrices and predict GEBV based on runs of homozygosity and shows that it can result in higher or similar accuracies of GEBV prediction than G LA , except for the real data analysis with validation of young animals. Compared to G IBS , G ROH resulted in more accurate GEBV predictions.


Assuntos
Bovinos/genética , Frequência do Gene/genética , Genômica/métodos , Homozigoto , Animais , Cruzamento , Simulação por Computador , Masculino , Modelos Genéticos , Linhagem , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Genet Sel Evol ; 46: 46, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25158690

RESUMO

BACKGROUND: Genotyping accounts for a substantial part of the cost of genomic selection (GS). Using both dense and sparse SNP chips, together with imputation of missing genotypes, can reduce these costs. The aim of this study was to identify the set of candidates that are most important for dense genotyping, when they are used to impute the genotypes of sparsely genotyped animals. In a real pig pedigree, the 2500 most recently born pigs of the last generation, i.e. the target animals, were used for sparse genotyping. Their missing genotypes were imputed using either Beagle or LDMIP from T densely genotyped candidates chosen from the whole pedigree. A new optimization method was derived to identify the best animals for dense genotyping, which minimized the conditional genetic variance of the target animals, using either the pedigree-based relationship matrix (MCA), or a genotypic relationship matrix based on sparse marker genotypes (MCG). These, and five other methods for selecting the T animals were compared, using T = 100 or 200 animals, SNP genotypes were obtained assuming Ne =100 or 200, and MAF thresholds set to D = 0.01, 0.05 or 0.10. The performances of the methods were compared using the following criteria: call rate of true genotypes, accuracy of genotype prediction, and accuracy of genomic evaluations using the imputed genotypes. RESULTS: For all criteria, MCA and MCG performed better than other selection methods, significantly so for all methods other than selection of sires with the largest numbers of offspring. Methods that choose animals that have the closest average relationship or contribution to the target population gave the lowest accuracy of imputation, in some cases worse than random selection, and should be avoided in practice. CONCLUSION: Minimization of the conditional variance of the genotypes in target animals provided an effective optimization procedure for prioritizing animals for genotyping or sequencing.


Assuntos
Genótipo , Técnicas de Genotipagem/veterinária , Suínos/genética , Animais , Cruzamento , Simulação por Computador , Marcadores Genéticos , Genômica , Linhagem , Polimorfismo de Nucleotídeo Único
5.
Genet Sel Evol ; 43: 35, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044555

RESUMO

Genome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP effects are applied that allow for very large SNP effects although most are small or even zero, but these prior distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling. In this study, we adopted the Pareto principle to weight available marker loci, i.e., we consider that x% of the loci explain (100 - x)% of the total genetic variance. Assuming this principle, it is also possible to define the variances of the prior distribution of the 'big' and 'small' SNP. The relatively few large SNP explain a large proportion of the genetic variance and the majority of the SNP show small effects and explain a minor proportion of the genetic variance. We name this method MixP, where the prior distribution is a mixture of two normal distributions, i.e. one with a big variance and one with a small variance. Simulation results, using a real Norwegian Red cattle pedigree, show that MixP is at least as accurate as the other methods in all studied cases. This method also reduces the hyper-parameters of the prior distribution from 2 (proportion and variance of SNP with big effects) to 1 (proportion of SNP with big effects), assuming the overall genetic variance is known. The mixture of normal distribution prior made it possible to solve the equations iteratively, which greatly reduced computation loads by two orders of magnitude. In the era of marker density reaching million(s) and whole-genome sequence data, MixP provides a computationally feasible Bayesian method of analysis.


Assuntos
Bovinos/genética , Variação Genética , Genoma , Genômica/métodos , Animais , Cruzamento , Feminino , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
6.
Am J Hum Genet ; 75(1): 17-26, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15152343

RESUMO

Both theoretical calculations and simulation studies have been used to compare and contrast the statistical power of methods for mapping quantitative trait loci (QTLs) in simple and complex pedigrees. A widely used approach in such studies is to derive or simulate the expected mean test statistic under the alternative hypothesis of a segregating QTL and to equate a larger mean test statistic with larger power. In the present study, we show that, even when the test statistic under the null hypothesis of no linkage follows a known asymptotic distribution (the standard being chi(2)), it cannot be assumed that the distribution under the alternative hypothesis is noncentral chi(2). Hence, mean test statistics cannot be used to indicate power differences, and a comparison between methods that are based on simulated average test statistics may lead to the wrong conclusion. We illustrate this important finding, through simulations and analytical derivations, for a recently proposed new regression method for the analysis of general pedigrees to map quantitative trait loci. We show that this regression method is not necessarily more powerful nor computationally more efficient than a maximum-likelihood variance-component approach. We advocate the use of empirical power to compare trait-mapping methods.


Assuntos
Mapeamento Cromossômico , Funções Verossimilhança , Locos de Características Quantitativas , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Genéticos , Modelos Estatísticos , Núcleo Familiar , Linhagem , Análise de Regressão , Estudos em Gêmeos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...