Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(32): 12289-12299, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548190

RESUMO

Double emulsions hold great potential for various applications due to their compartmentalized internal structures. However, achieving their long-term physical stability remains a challenging task. Here, we present a simple one-step method for producing stable oil-in-water-in-oil (O/W/O) double emulsions using biocompatible gliadin/ethyl cellulose complex particles as the sole stabilizer. The resulting O/W/O systems serve as effective platforms for encapsulating enzymes and as templates for synthesizing porous microspheres. We investigated the impact of particle concentration and water fraction on the properties of Pickering O/W/O emulsions. Our results demonstrate that the number and volume of inner oil droplets increased proportionally with both the water fraction and particle concentration after a 60-day storage period. Moreover, the catalytic reaction rate of the encapsulated lipase within the double emulsion exhibited a significant acceleration, achieving a substrate conversion of 80.9% within 15 min. Remarkably, the encapsulated enzyme showed excellent recyclability, enabling up to 10 cycles of reuse. Additionally, by utilizing the O/W/O systems as templates, we successfully obtained porous microspheres whose size can be controlled by the outer water droplet. These findings have significant implications for the future design of Pickering complex emulsion-based systems, opening avenues for extensive applications in pharmaceuticals, food, cosmetics, material synthesis, and (bio)catalysis.


Assuntos
Celulose , Gliadina , Emulsões/química , Gliadina/química , Celulose/química , Excipientes , Água/química , Tamanho da Partícula
2.
J Agric Food Chem ; 68(40): 11261-11272, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32806120

RESUMO

Porous materials derived from natural and biodegradable polymers have received growing interest. We demonstrate here an attractive method for the preparation of protein-based porous materials using emulsions stabilized by gliadin-chitosan hybrid particles (GCHPs) as the template, with the addition of gelatin and kosmotropic ions to improve the mechanical strength. The microstructure, mechanical properties, cytotoxicity, and fluid absorption behavior of porous materials were systematically investigated. This strategy facilitated the formation of porous materials with highly open and interconnected pore structure, which can be manipulated by altering the mass ratio of hexane or gelatin in the matrix. The Hofmeister effect resulted from kosmotropic ions greatly enhanced the Young's modulus and the compressive stress at 40% strain of porous materials from 0.56 to 6.84 MPa and 0.26 to 1.11 MPa, respectively. The developed all-natural porous materials were nontoxic to HaCaT cells; they also had excellent liquid (i.e., simulated body fluid and rabbit blood) absorption performance and advantages in resisting stress and maintaining geometry shape. The effects of different concentration amounts and type of salts in the Hofmeister series on the formation and performance of porous materials were also explored. Mechanical strength of porous materials was gradually enhanced when the (NH4)2SO4 concentration increased from 0 to 35 wt %, and the other four kosmotropic salts, including Na2S2O3, Na2CO3, NaH2PO4, and Na2SO4, also showed positive effects. This work opens a simple and feasible way to produce nontoxic and biodegradable porous materials with favorable mechanical strength and controllable pore structure. These materials have broad potential application in many fields involving biomedical and material science, such as cell culture, (bio)catalysis, and wound or bone defect healing.


Assuntos
Materiais Biocompatíveis/química , Emulsões/química , Gliadina/química , Fenômenos Biomecânicos , Quitosana/química , Módulo de Elasticidade , Gelatina/química , Células HaCaT , Humanos , Teste de Materiais , Polímeros/química , Porosidade
3.
J Agric Food Chem ; 67(12): 3423-3431, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30835109

RESUMO

Pickering high internal-phase emulsions (HIPEs) and porous materials derived from the Pickering HIPEs have received increased attention in various research fields. Nevertheless, nondegradable inorganic and synthetic stabilizers present toxicity risks, thus greatly limiting their wider applications. In this work, we successfully developed nontoxic porous materials through the Pickering HIPE-templating process without chemical reactions. The obtained porous materials exhibited appreciable absorption capacity to corn oil and reached the state of saturated absorption within 3 min. The Pickering HIPE templates were stabilized by gliadin-chitosan complex particles (GCCPs), in which the volume fraction of the dispersed phase (90%) was the highest of all reported food-grade-particle-stabilized Pickering HIPEs so far, further contributing to the interconnected pore structure and high porosity (>90%) of porous materials. The interfacial particle barrier (Pickering mechanism) and three-dimensional network formed by the GCCPs in the continuous phase play crucial roles in stabilization of HIPEs with viscoelastic and self-supporting attributes and also facilitate the development of porous materials with designed pore structure. These materials, with favorable biocompatibility and biodegradability, possess excellent application prospects in foods, pharmaceuticals, materials, environmental applications, and so on.


Assuntos
Quitosana/química , Gliadina/química , Emulsões/química , Tamanho da Partícula , Óleos de Plantas/química , Porosidade , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...