Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(23): 5734-5748, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771222

RESUMO

Biomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties in vitro and in vivo. The obtained CuCDs/OPAM exhibited good rBMSCs-cytocompatibility and anti-inflammatory properties in vitro. It also could effectively promote rBMSCs differentiation and the expression of osteogenic differentiation factors from rBMSCs under an inflammatory environment. Moreover, CuCDs/OPAM could induce macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) in vivo, which is beneficial for anti-inflammatory action and presents good osteoimmunomodulation capability to induce a bone immune microenvironment to promote the differentiation of rBMSCs. In conclusion, CuCDs/OPAM hydrogel has dual functions of osteoimmunomodulatory and bone repair and is a promising bone filling and repair material.


Assuntos
Regeneração Óssea , Carbono , Cobre , Hidrogéis , Osteogênese , Osteogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Animais , Cobre/química , Cobre/farmacologia , Diferenciação Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Pontos Quânticos/química , Camundongos , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/citologia
2.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525920

RESUMO

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Assuntos
Calcinose , Próteses Valvulares Cardíacas , Humanos , Animais , Bovinos , Idoso , Sulfatos de Condroitina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Valvas Cardíacas , Glutaral , Anti-Inflamatórios/farmacologia , Pericárdio
3.
ACS Appl Mater Interfaces ; 16(1): 201-216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38127723

RESUMO

Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.


Assuntos
Dissulfetos , Nanosferas , Alicerces Teciduais , Alicerces Teciduais/química , Molibdênio/farmacologia , Osteoblastos , Regeneração Óssea
4.
J Mater Chem B ; 11(43): 10464-10481, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37901956

RESUMO

Repairing articular cartilage defects is a great challenge due to the poor self-regenerative capability of cartilage. Inspired by active substances found in the natural cartilage extracellular matrix, we used methacrylated carboxymethyl chitosan (MA-CMCS) and oxidized locust bean gum (OLBG) as the hydrogel backbone, and prepared a photocrosslinked dual network hydrogel containing allicin and decellularized cartilage powder (DCP). The rheological, swelling and water retention capacities of MA-CMCS@OLBG-Allicin/DCP (MCOAC) hydrogels were investigated to confirm the successful preparation of hydrogels suitable for cartilage repair. The MCOAC hydrogels showed good antibacterial ability to kill S. aureus and E. coli and anti-inflammatory properties due to the introduction of allicin. Furthermore, MA-CMCS@OLBG-Allicin/DCP hydrogels presented good cytocompatibility due to the addition of DCP, which could promote chondrocyte proliferation and promote the differentiation of BMSCs to chondrocytes. Further studies in vivo demonstrated that the DCP-contained MCOAC hydrogel exhibited superior performance in promoting cartilage tissue growth and wound healing in articular cartilage defects. Thus, the MCOAC hydrogel is a promising cartilage repair hydrogel with potential for clinical use.


Assuntos
Cartilagem Articular , Quitosana , Hidrogéis/farmacologia , Escherichia coli , Staphylococcus aureus
5.
Acta Biomater ; 171: 466-481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793601

RESUMO

Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Trombose , Animais , Suínos , Nanogéis , Glutaral/química , Peróxido de Hidrogênio/química , Atorvastatina/farmacologia , Bases de Schiff , Valvas Cardíacas , Heparina , Inflamação , Anti-Inflamatórios , Anticoagulantes , Ácidos Sulfônicos
7.
Int J Biol Macromol ; 242(Pt 1): 124618, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148948

RESUMO

Rapid occlusion is the culprit leading to implantation failure of biological blood vessels. Although adenosine is a clinical-proven drug to overcome the problem, its short half-life and turbulent burst-release limit its direct application. Thus, a pH/temperature dual-responsive blood vessel possessed controllable long-term adenosine secretion was constructed based on acellular matrix via compact crosslinking by oxidized chondroitin sulfate (OCSA) and functionalized with apyrase and acid phosphatase. These enzymes, as adenosine micro-generators, controlled the adenosine release amount by "real-time-responding" to acidity and temperature of vascular inflammation sites. Additionally, the macrophage phenotype was switched from M1 to M2, and related factors expression proved that adenosine release was effectively regulated with the severity of inflammation. What's more, the ultra-structure for degradation resisting and endothelialization accelerating was also preserved by their "double-crosslinking". Therefore, this work suggested a new feasible strategy providing a bright future of long-term patency for transplanted blood vessels.


Assuntos
Prótese Vascular , Macrófagos , Humanos , Inflamação , Adenosina/química
8.
Int J Biol Macromol ; 241: 124522, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100332

RESUMO

Acellular porcine aorta (APA) is an excellent candidate for an implanted scaffold but needs to be modified with appropriate cross-linking agent to increase its mechanical property and storage time in vitro as well as to give itself some bioactivities and eliminate its antigenicity for acting as a novel esophageal prosthesis. In this paper, a polysaccharide crosslinker (oxidized chitosan, OCS) was prepared by oxidizing chitosan using NaIO4 and further used to fix APA to prepare a novel esophageal prosthesis (scaffold). And then the surface modification with dopamine (DOPA) and strontium-doped calcium polyphosphate (SCPP) were performed one after another to prepare DOPA/OCS-APA and SCPP-DOPA/OCS-APA to improve the biocompatibility and inhibit inflammation of the scaffolds. The results showed that the OCS with a feeding ratio of 1.5:1.0 and a reaction time of 24 h had a suitable molecular weight and oxidation degree, almost no cytotoxicity and good cross-linking effect. Compared with glutaraldehyde (GA) and genipin (GP), OCS-fixed APA could provide a more suitable microenvironment for cell proliferation. The vital cross-linking characteristics and cytocompatibility of SCPP-DOPA/OCS-APA were evaluated. Results suggested that SCPP-DOPA/OCS-APA exhibited suitable mechanical properties, excellent resistance to enzymatic degradation/acid degradation, suitable hydrophilicity, and the ability to promote the proliferation of Human normal esophageal epithelial cells (HEECs) and inhibit inflammation in vitro. In vivo tests also confirmed that SCPP-DOPA/OCS-APA could diminish the immunological response to samples and had a positive impact on bioactivity and anti-inflammatory. In conclusion, SCPP-DOPA/OCS-APA could act as an effective, bioactive artificial esophageal scaffold and be expected to be used for clinical in the future.


Assuntos
Quitosana , Dopamina , Suínos , Animais , Humanos , Di-Hidroxifenilalanina , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Alicerces Teciduais , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas
9.
Carbohydr Polym ; 310: 120724, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925249

RESUMO

Currently commercial glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) suffer from thromboembolic complications, calcification, and limited durability, which are the major stumbling block to wider clinical application of BVLs. Thus, developing new-style BVLs will be an urgent need to enhance the durability of BVLs and alleviate thromboembolic complications. In this study, a quick and effective collaborative strategy of the double crosslinking agents (oxidized polysaccharide and natural active crosslinking agent) was reported to realize enhanced mechanical, and structural stability, excellent hemocompatibility and anti-calcification properties of BVLs. Dialdehyde xanthan gum (AXG) exhibiting excellent stability to heat, acid-base, salt, and enzymatic hydrolysis was first introduced to crosslink decellularized porcine pericardium (D-PP) and then curcumin with good properties of anti-inflammatory, anti-coagulation, anti-liver fibrosis, and anti-atherosclerosis was used to synergistically crosslink and multi-functionalize D-PP to obtain AXG + Cur-PP. A comprehensive evaluation of structural characterization, hemocompatibility, endothelialization potential, mechanical properties and component stability showed that AXG + Cur-PP exhibited better anti-thrombotic properties and endothelialization potential, milder immune responses, excellent anti-calcification properties and enhanced mechanical properties compared with GA-crosslinked PP. Overall, this cooperative crosslinking strategy provides a novel solution to achieve BVLs with enhanced mechanical properties and excellent anti-coagulation, anti-inflammatory, anti-calcification, and the ability to promote endothelial cell proliferation.


Assuntos
Bioprótese , Curcumina , Próteses Valvulares Cardíacas , Suínos , Animais , Curcumina/farmacologia , Reagentes de Ligações Cruzadas/química , Glutaral/química
10.
ACS Biomater Sci Eng ; 9(5): 2452-2469, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37000687

RESUMO

Modulating both inflammation and stem cells by designing an artificial joint material to obtain the continuous prevention and control on aseptic loosening (AL) is a novel strategy. In this paper, graphene/europium-doped calcium polyphosphate (GNPs/ECPP) particles were obtained by ultrasound method and spark plasma sintering (SPS) method. The prepared particles were used to modulate the inflammatory response and further obtain cascade regulation on the proliferation, recruitment, and differentiation of stem cells. The results showed that particles obtained by SPS had a stronger effect on promoting the proliferation and differentiation of stem cells, while by ultrasound method more stem cells were recruited. Besides, the graphene and Eu3+ contained in the particles obtained by SPS method could effectively play a synergistic role on the differentiation of stem cells. In vivo experiment results demonstrated that the composite particles effectively suppress the inflammatory response, recruit stem cells, and prevent AL by inhibiting the secretion of inflammatory factors.


Assuntos
Grafite , Macrófagos , Células-Tronco , Diferenciação Celular , Proliferação de Células
11.
J Biomed Mater Res A ; 111(2): 170-184, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054309

RESUMO

Naringin (Nar), a natural flavanone glycoside, has been shown to possess a variety of biological activities, including anti-inflammatory, anti-apoptotic, bone formation, and so forth. In this study, Nar was oxidized by sodium periodate and the oxidized naringin (ONar) was used as a novel biological crosslinking agent. In addition, ONar-fixed porcine decellularized Achilles tendon (DAT) was developed to substitute anterior cruciate ligament (ACL) for researching a novel ACL replacement material. The ONar with a 24 h oxidation time had appropriate aldehyde group content, almost no cytotoxicity, and a good crosslinking effect. The critical characteristics and cytocompatibility of ONar-fixed DAT were also investigated. The results demonstrated that 1% ONar-fixed DAT exhibited good resistance to enzymatic degradation and thermal stability as well as suitable mechanical strength. Moreover, 1% ONar-fixed specimens exhibited excellent L929 fibroblasts-cytocompatibility and MC3T3-E1-cytocompatibility. They also promoted the secretion of hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF) from fibroblasts and bone morphogenetic protein-2 (BMP-2) from osteoblasts. And they also showed the good anti-inflammatory properties in vivo experiments. Our data provided an experimental basis for ONar as a new cross-linking reagent in chemical modification of DAT and ONar-fixed DAT for ACL repair.


Assuntos
Ligamento Cruzado Anterior , Animais , Ligamento Cruzado Anterior/cirurgia , Estudos de Viabilidade , Suínos
12.
J Mater Chem B ; 10(40): 8218-8234, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36173240

RESUMO

Clinically frequently-used glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) are still curbed by acute thrombosis, malignant immunoreaction, calcification, and poor durability. In this study, an anticoagulant heparin-like biomacromolecule, sulfonated, oxidized pectin (SAP) with a dialdehyde structure was first obtained by modifying citrus pectin with sulfonation of 3-amino-1-propane sulfonic acid and then oxidating with periodate. Notably, a novel crosslinking approach was established by doubly crosslinking BVLs with SAP and the nature-derived crosslinking agent quercetin (Que), which play a synergistic role in both crosslinking and bioactivity. The double crosslinked BVLs also presented enhanced mechanical properties and enzymatic degradation resistance owing to the double crosslinking networks formed via CN bonds and hydrogen bonds, respectively, and good HUVEC-cytocompatibility. The in vitro and ex vivo assay manifested that the double-crosslinked BVLs had excellent anticoagulant and antithrombotic properties, owing to the introduction of SAP. The subcutaneous implantation also demonstrated that the obtained BVLs showed a reduced inflammatory response and great resistance to calcification, which is attributed to quercetin with multiple physiological activities and depletion of aldehyde groups by hydroxyl aldehyde reaction. With excellent stability, hemocompatibility, anti-inflammatory, anti-calcification, and pro-endothelialization properties, the obtained double-crosslinked BVLs, SAP + Que-PP, would have great potential to substitute the current clinical GA-crosslinked BVLs.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Humanos , Glutaral/química , Quercetina/farmacologia , Propano , Fibrinolíticos , Reagentes de Ligações Cruzadas/química , Calcinose/patologia , Pectinas/farmacologia , Heparina , Anticoagulantes/farmacologia , Ácidos Sulfônicos
13.
Biomater Sci ; 10(21): 6291-6306, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135326

RESUMO

Bone tissue regeneration is still a major orthopedic challenge. The process of bone regeneration is often disrupted by inflammation. Elevated levels of reactive oxygen species (ROS) can lead to aggravated inflammation and even hinder tissue repairs. Therefore, inhibiting the inflammatory response during the process of bone regeneration and promoting bone tissue regeneration under inflammatory conditions are the goals that need to be achieved urgently. In this work, dexamethasone carbon dots (DCDs) were developed by a one-pot facile hydrothermal method using citric acid, ammonium fluoride, and a trace amount of dexamethasone. The obtained DCDs exhibited good biocompatibility and could promote the differentiation of rBMSCs under both normal and inflammatory conditions. Owing to the abundant-reducing groups, DCDs could also scavenge ROS (˙OH) and retain the pharmacological activity of dexamethasone, thereby reducing the inflammatory response. Moreover, DCDs presented a good osteoimmunomodulatory activity to induce a bone immune microenvironment and further promote the differentiation of BMSCs. DCDs could promote macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) under inflammatory conditions, which was beneficial to the anti-inflammatory response. All in all, DCDs could reduce the inflammatory response of bone tissue and accelerate bone regeneration in combination with the regulation of the bone immune. Undoubtedly, it also provided a new idea for developing a novel carbon nanomaterial for repairing bone tissue defects.


Assuntos
Carbono , Osteogênese , Humanos , Espécies Reativas de Oxigênio/farmacologia , Carbono/farmacologia , Regeneração Óssea , Inflamação , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Ácido Cítrico , Diferenciação Celular
14.
Food Funct ; 13(18): 9622-9634, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36004684

RESUMO

Rapid hemostasis, antibacterial effect and promotion of wound healing are the most important functions that wound dressings need to have. In this work, we designed and prepared a hydrogel with antibacterial effect, hemostatic ability and wound healing promotion using agar, polyvinyl alcohol (PVA) and tannic acid (TA). We performed a series of tests to characterize the structure and properties of AGAR@PVA-TA hydrogels. The results showed that the AGAR@PVA-TA hydrogels had good mechanical properties and excellent antibacterial ability as well as good hemocompatibility. The cytotoxicity results showed that the AGAR@PVA-TA hydrogels had good cytocompatibility. And the TA loaded hydrogels also presented some good performances in animal studies. In the liver hemostasis model, the AGAR@PVA-TA hydrogel showed good hemostatic ability. Also, the AGAR@PVA-TA hydrogel was able to promote wound healing in an S. aureus-infected rat wound model. More importantly, our research results demonstrated that compared to other polyphenols (such as proanthocyanidins), TA could better improve the mechanical properties, antibacterial ability and rapid hemostasis of hydrogels, which illustrated the uniqueness of TA. Therefore, the TA loaded hydrogel (AGAR@PVA-TA hydrogel) has the potential to be applied as a wound dressing.


Assuntos
Hemostáticos , Proantocianidinas , Ágar , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Hemostasia , Hemostáticos/farmacologia , Hidrogéis/química , Polifenóis/farmacologia , Álcool de Polivinil/química , Proantocianidinas/farmacologia , Ratos , Staphylococcus aureus , Taninos/farmacologia
15.
Biomater Sci ; 10(19): 5535-5551, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35947038

RESUMO

Commercial biological valve leaflets (BVLs) crosslinked with glutaraldehyde (GA) are at risk of accelerating damage and even failure, owing to the high cell toxicity of GA, acute thrombosis, and calcification in clinical applications. In this study, a novel joint strategy of double crosslinking agents (dialdehyde pectin (AP) and carbodiimide) and heparin-loaded hydrogel coating was developed, endowing BVLs with excellent mechanical properties and multiple performances. Herein, AP played two essential roles, the crosslinking agent and the main component of the hydrogel coating. Both experimental and theoretical results indicated that the mechanical properties and stability of double-crosslinked BVLs were comparable to those of GA, and heparin loaded in hydrogel coating could improve the hemocompatibility of AP + EDC/NHS-PP. Further, cytocompatibility and in vivo tests showed that compared with GA-PP, AP + EDC/NHS + CS + Hep-PP has exhibited good endothelialization ability, mild immune response and anti-calcification performance and therefore prompts it to be an extremely valuable candidate for more durable and multifunctional BVLs.


Assuntos
Calcinose , Hidrogéis , Anticoagulantes , Carbodi-Imidas , Glutaral , Heparina , Humanos , Pectinas
16.
Tissue Eng Part C Methods ; 28(6): 272-284, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35611974

RESUMO

Decellularized porcine pericardium has many applications in the cardiovascular field for its excellent properties. The peritoneum is a single-layer bio-dialysis membrane with many similarities and differences in physical characteristics, biochemical composition, and structure to the pericardium. The limited available literature suggests that, similar to the pericardium, the peritoneum has good application potential in the field of cardiovascular substitute materials. This research focused on comparing the differences between decellularized peritoneum and decellularized pericardium in microstructure, biochemical composition, mechanical properties, hemocompatibility, in vitro enzymatic degradation, in vitro calcification, cytocompatibility, and other vital indicators. The peritoneum was consistent with pericardium in terms of fibrous structure, hemocompatibility, in vitro calcification, and cytocompatibility. The peritoneal elastic fiber content (219 µg/mg) was significantly higher than that of the pericardium (66 µg/mg), resulting in two to three times higher maximum load (21.1 N) and burst pressure (1309 mmHg), and better performance than the pericardium in terms of in vitro resistance to enzymatic degradation. In the cardiovascular field, decellularized peritoneum can be used as vascular substitute material. Impact statement There are many similarities between the embryonic origin and morphological structure of the porcine peritoneum and the porcine pericardium, but little research has been done on the use of the porcine peritoneum as a biomaterial. In this compared research, we showed that porcine peritoneum had better resistance to enzymatic degradation, better stretching, and more suitable burst pressure for being used as vascular substitute material. This research is the first to describe the structural composition of porcine peritoneum and its advantageous properties as a cardiovascular material.


Assuntos
Pericárdio , Peritônio , Animais , Materiais Biocompatíveis , Teste de Materiais/métodos , Suínos
17.
Biomed Mater ; 17(4)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35545061

RESUMO

Bone regeneration in large bone defects remains one of the major challenges in orthopedic surgery. Calcium polyphosphate (CPP) scaffolds possess excellent biocompatibility and exhibits good bone ingrowth. However, the present CPP scaffolds lack enough osteoinductive activity to facilitate bone regeneration at bone defects that exceed the critical size threshold. To endow CPP scaffolds with improved osteoinductive activity for better bone regeneration, in this study, a self-assembled coating with chitosan-grafted reduced graphene oxide (CS-rGO) sheets was successfully constructed onto the surface of CPP scaffolds through strong electrostatic interaction and hydrogen bonds. Our results showed that the obtained CPP/CS-rGO composite scaffolds exhibited highly improved biomineralization and considerable antibacterial activity. More importantly, CPP/CS-rGO composite scaffolds could drive osteogenic differentiation of BMSCs and significantly up-regulate the expression of osteogenesis-related proteinsin vitro. Meanwhile, the CS-rGO coating could inhibit aseptic loosening and improve interfacial osseointegration through stimulating bone marrow mesenchymal stem cells (BMSCs) to secrete more osteoprotegerin (OPG) and lesser receptor activator of nuclear factor-κB ligand (RANKL). Overall, the CS-rGO coating adjusts CPP scaffolds' biological environment interface and endows CPP scaffolds with more bioactivity.


Assuntos
Quitosana , Engenharia Tecidual , Cálcio , Quitosana/química , Grafite , Osteogênese , Polifosfatos , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
18.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800810

RESUMO

Multifunctional wound dressings urgently need to be developed to meet the various needs of wound healing. In this work, we first proposed a new method about modifying the guar gum (GG) by performing a quaternization graft reaction and then oxidation. The obtained oxidized quaternized guar gum (OQGG) not only has antibacterial function due to the introduction of quaternary ammonium groups, but also can become one of the components of Schiff base hydrogels due to the presence of aldehyde groups. Therefore, we used it and carboxymethyl chitosan (CMCS) to design a hydrogel with antibacterial, hemostatic, self-repairing and injectable properties. We characterized the structure of OQGG and OQGG@CMCS hydrogels, but also evaluated the performance of the hydrogels. The results showed that GG was successfully modified to OQGG and OQGG@CMCS hydrogel was successfully prepared, and the obtained OQGG@CMCS hydrogel showed excellent antibacterial and hemostatic properties, and exhibited self-healing and injectability. In addition, cytotoxicity tests demonstrated that the OQGG@CMCS hydrogels presented good cytocompatibility. Further, the OQGG@CMCS hydrogel significantly promoted wound healing in an S. aureus-infected rat wound model. Therefore, the hydrogel has the potential to be applied as a wound dressing.


Assuntos
Quitosana , Hemostáticos , Animais , Antibacterianos/farmacologia , Bandagens , Galactanos , Hemostáticos/farmacologia , Hidrogéis , Mananas , Gomas Vegetais , Ratos , Staphylococcus aureus
19.
Biomater Sci ; 9(22): 7617-7635, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34671797

RESUMO

To conveniently and effectively cure heart valve diseases or defects, combined with transcatheter valve technology, bioprosthetic heart valves (BHVs) originated from the decellularized porcine pericardium (D-PP) have been broadly used in clinics. Unfortunately, most clinically available BHVs crosslinked with glutaraldehyde (GA) were challenged in their long-term tolerance, degenerative structural changes, and even failure, owing to the synergistic impact of multitudinous elements (cytotoxicity, calcification, immune responses, etc.). In this work, dialdehyde pectin (AP) was prepared by oxidizing the o-dihydroxy of pectin with sodium periodate. Hereafter, the AP-fixed PP model was obtained by crosslinking D-PP with AP with high aldehyde content (6.85 mmol g-1), for acquiring excellent mechanical properties and outstanding biocompatibility. To further improve the hemocompatibility of the AP-fixed PP, a natural and specific inhibitor of thrombin (hirudin) was introduced to achieve surface modification of the AP-fixed PP. The feasibility of crosslinking and functionalizing AP-fixed PP, which was a potential leaflet material of BHVs, was exhaustively and systematically evaluated. In vitro studies found that hirudin-loaded and AP-fixed PP (AP + Hirudin-PP) had synchronously achieved effective fixation of collagen, highly effective anticoagulation, and good HUVECs-cytocompatibility. In vivo results revealed that the AP + Hirudin-PP specimens recruited the minimum immune cells in the implantation experiment, and also presented an excellent anti-calcification effect. Overall, AP + Hirudin-PP was endowed with competitive collagen stability (compared with GA-fixed PP), excellent hemocompatibility, good HUVECs-cytocompatibility, low immunogenicity and outstanding anti-calcification, suggesting that AP + Hirudin-PP might be a promising alternative to GA-fixed PP and exhibited a bright prospect in the clinical applications of BHVs.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Anticoagulantes , Glutaral , Valvas Cardíacas , Hirudinas , Pectinas , Pericárdio , Suínos
20.
Biomed Mater ; 16(6)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34492639

RESUMO

Due to its excellent biocompatibility and anti-inflammatory activity, amniotic membrane (AM) has attracted much attention from scholars. However, its clinical application in vascular reconstruction was limited for poor processability, rapid biodegradation, and insufficient hemocompatibility. A naturally extracted substance with good cytocompatibility, phytic acid (PA), which can quickly form strong and stable hydrogen bonds on the tissue surface, was used to crosslink decellularized AM (DAM) to prepare a novel vascular replacement material. The results showed that PA-fixed AM had excellent mechanical strength and resistance to enzymatic degradation as well as appropriate surface hydrophilicity. Among all samples, 2% PA-fixed specimen showed excellent human umbilical vein endothelial cells (HUVECs)-cytocompatibility and hemocompatibility. It could also stimulate the secretion of vascular endothelial growth factor and endothelin-1 from seeded HUVECs, indicating that PA might promote neovascularization after implantation of PA-fixed specimens. Also, 2% PA-fixed specimen could inhibit the secretion of tumor necrosis factor-αfrom co-cultured macrophages, thus might reduce the inflammatory response after sample implantation. Finally, the results ofex vivoblood test andin vivoexperiments confirmed our deduction that PA might promote neovascularization after implantation. All the results indicated that prepared PA-fixed DAM could be considered as a promising small-diameter vascular replacement material.


Assuntos
Âmnio , Anti-Inflamatórios , Matriz Extracelular Descelularizada , Ácido Fítico , Âmnio/química , Âmnio/citologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Vasos Sanguíneos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular Descelularizada/toxicidade , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Ácido Fítico/química , Ácido Fítico/farmacologia , Coelhos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...