Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834154

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive malignancy and represents the most common brain tumor in adults. To better understand its biology for new and effective therapies, we examined the role of GDP-mannose pyrophosphorylase B (GMPPB), a key unit of the GDP-mannose pyrophosphorylase (GDP-MP) that catalyzes the formation of GDP-mannose. Impaired GMPPB function will reduce the amount of GDP-mannose available for O-mannosylation. Abnormal O-mannosylation of alpha dystroglycan (α-DG) has been reported to be involved in cancer metastasis and arenavirus entry. Here, we found that GMPPB is highly expressed in a panel of GBM cell lines and clinical samples and that expression of GMPPB is positively correlated with the WHO grade of gliomas. Additionally, expression of GMPPB was negatively correlated with the prognosis of GBM patients. We demonstrate that silencing GMPPB inhibits the proliferation, migration, and invasion of GBM cells both in vitro and in vivo and that overexpression of GMPPB exhibits the opposite effects. Consequently, targeting GMPPB in GBM cells results in impaired GBM tumor growth and invasion. Finally, we identify that the Hippo/MMP3 axis is essential for GMPPB-promoted GBM aggressiveness. These findings indicate that GMPPB represents a potential novel target for GBM treatment.


Assuntos
Neoplasias Encefálicas , Inativação Gênica , Glioblastoma , Adulto , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Manose , Metaloproteinase 3 da Matriz/metabolismo
2.
Cancer Chemother Pharmacol ; 86(6): 773-782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33074386

RESUMO

PURPOSE: Glioma, especially glioblastoma (GBM), is the most aggressive malignant brain tumor and its standard therapy is often ineffective because of temozolomide (TMZ) resistance. Reversal of the TMZ resistance might improve the prognosis of glioma patients. We previously found that interferon-α (IFN-α) and anti-epileptic drug levetiracetam (LEV) could sensitize glioma to TMZ, respectively. In this study, we further investigated the efficiency of combining of LEV and IFN-α for improving the efficacy of TMZ. METHODS: We evaluated whether LEV and IFN-α could increase TMZ efficacy using colony formation assay and cell viability assay with MGMT-positive and MGMT-negative glioma cell lines in vitro. Subcutaneous xenografts and orthotopic xenografts mice models were used in vivo to observe the tumor growth and mice survival upon treatments with TMZ, TMZ + IFN-α, TMZ + LEV, or TMZ + LEV + IFN-α. The expression levels of MGMT, markers of pro-apoptotic and anti-apoptotic in tumor samples were analyzed by Western blotting. RESULTS: The combinational use of IFN-α, LEV, and TMZ showed the best anti-tumor activity in MGMT-positive cell lines (U138, GSC-1, U118, and T98 G). TMZ + LEV + IFN-α further obviously increased TMZ + LEV or TMZ + IFN-α efficiency in MGMT-positive cell lines, while not in negative cell lines (SKMG-4, U87, U373, and U251) in vitro, which were also observed in subcutaneous mice models (U138, GSC-1 compared to SKMG-4, U87) and orthotopic models (GSC-1) in vivo. Strikingly, the combination of LEV and IFN-α together with TMZ significantly prolonged the survival of mice with orthotopic GSC-1 glioma. Furthermore, we confirmed that the combination of LEV and IFN-α enhanced the inhibition of MGMT and the activation of apoptosis in U138 tumor on the basis of TMZ treatment. CONCLUSIONS: The combination use of LEV and IFN-α could be an optimal method to overcome TMZ resistance through obvious MGMT inhibition in MGMT-positive glioma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Interferon-alfa/farmacologia , Levetiracetam/farmacologia , Temozolomida/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/análise , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/análise , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Glioma/patologia , Humanos , Interferon-alfa/uso terapêutico , Levetiracetam/uso terapêutico , Camundongos , Temozolomida/uso terapêutico , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Neurooncol ; 148(2): 245-258, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32405996

RESUMO

OBJECTIVE: Optical molecular imaging technology that indiscriminately detects intracranial glioblastoma (GBM) can help neurosurgeons effectively remove tumor masses. Transferrin receptor 1 (TfR 1) is a diagnostic and therapeutic target in GBM. A TfR 1-targeted peptide, CRTIGPSVC (CRT), was shown to cross the blood brain barrier (BBB) and accumulate at high levels in GBM tissues. In this study, we synthesized a TfR 1-targeted near-infrared fluorescent (NIRF) probe, Cy5-CRT, for identifying the GBM tissue margin in mouse models. METHODS: We initially confirmed the overexpression of TfR 1 in GBM and the tumor-specific homing ability of Cy5-CRT in subcutaneous and orthotopic GBM mouse models. We then examined the feasibility of Cy5-CRT for identifying the tumor margin in orthotopic GBM xenografts. Finally, we compared Cy5-CRT with the clinically used fluorescein sodium in identifying tumor margins. RESULTS: Cy5-CRT specifically accumulated in GBM tissues and detected the tumor burden with exceptional contrast in mice with orthotopic GBM, enabling fluorescence-guided GBM resection under NIRF live imaging conditions. Importantly, Cy5-CRT recognized the GBM tissue margin more clearly than fluorescein sodium. CONCLUSIONS: The TfR 1-targeted optical probe Cy5-CRT specifically differentiates tumor tissues from the surrounding normal brain with high sensitivity, indicating its potential application for the precise surgical removal of GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Receptores da Transferrina/metabolismo , Animais , Carbocianinas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fluoresceína , Corantes Fluorescentes , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 10(12): 879, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754182

RESUMO

Vasculogenic mimicry (VM), the formation of vessel-like structures by highly invasive tumor cells, has been considered one of several mechanisms responsible for the failure of anti-angiogenesis therapy in glioma patients. Therefore, inhibiting VM formation might be an effective therapeutic method to antagonize the angiogenesis resistance. This study aimed to show that an extracellular protein called Tenascin-c (TNC) is involved in VM formation and that TNC knockdown inhibits VM in glioma. TNC was upregulated with an increase in glioma grade. TNC and VM formation are potential independent predictors of survival of glioma patients. TNC upregulation was correlated with VM formation, and exogenous TNC stimulated VM formation. Furthermore, TNC knockdown significantly suppressed VM formation and proliferation in glioma cells in vitro and in vivo, with a reduction in cellular invasiveness and migration. Mechanistically, TNC knockdown decreased Akt phosphorylation at Ser473 and Thr308 and subsequently downregulated matrix metalloproteinase 2 and 9, both of which are important proteins associated with VM formation and migration. Our results indicate that TNC plays an important role in VM formation in glioma, suggesting that TNC is a potential therapeutic target for anti-angiogenesis therapy for glioma.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioma/irrigação sanguínea , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Tenascina/metabolismo , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Glioma/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Gradação de Tumores , Neovascularização Patológica/enzimologia , Neovascularização Patológica/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tenascina/biossíntese , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...