Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890427

RESUMO

The dry mass and the orientation of biomolecules can be imaged without a label by measuring their permittivity tensor (PT), which describes how biomolecules affect the phase and polarization of light. Three-dimensional (3D) imaging of PT has been challenging. We present a label-free computational microscopy technique, PT imaging (PTI), for the 3D measurement of PT. PTI encodes the invisible PT into images using oblique illumination, polarization-sensitive detection and volumetric sampling. PT is decoded from the data with a vectorial imaging model and a multi-channel inverse algorithm, assuming uniaxial symmetry in each voxel. We demonstrate high-resolution imaging of PT of isotropic beads, anisotropic glass targets, mouse brain tissue, infected cells and histology slides. PTI outperforms previous label-free imaging techniques such as vector tomography, ptychography and light-field imaging in resolving the 3D orientation and symmetry of organelles, cells and tissue. We provide open-source software and modular hardware to enable the adoption of the method.

2.
Adv Mater ; 36(26): e2401550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38591837

RESUMO

Stretchable electrodes are an essential component that determines the functionality and reliability of stretchable electronics, but face the challenge of balancing conductivity and stretchability. This work proposes a new conducting concept called the interfacial percolation network (PN) that results in stretchable electrodes with high conductivity, large stretchability, and high stability. The interfacial PN is composed of a 2D silver nanowires (AgNWs) PN and a protruding 3D AgNWs PN embedded on the surface and in the near-surface region of an elastic polymer matrix, respectively. The protruded PN is obtained by changing the arrangements of AgNWs from horizontal to quasi-vertical through introducing foreign polymer domains in the near-surface region of the polymer matrix. The resulting electrode achieves a conductivity of 13 500 S cm-1 and a stretchability of 660%. Its resistance changes under stretched conditions are orders of magnitude lower than those of conventional 2D PN and 2D + 3D PN. An interfacial PN electrode made from liquid metal remained its conductivity at 46 750 S cm-1 after the electrode underwent multiple stretch-release cycles with a deformation of >600%. The concept of interfacial PN provides fruitful implications for the design of stretchable electronics.

3.
Opt Express ; 32(6): 9958-9966, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571219

RESUMO

In this study, a three-dimensional (3D) laser micromachining system with an integrated sub-100 nm resolution in-situ measurement system was proposed. The system used the same femtosecond laser source for in-situ measurement and machining, avoiding errors between the measurement and the machining positions. It could measure the profile of surfaces with an inclination angle of less than 10°, and the measurement resolution was greater than 100 nm. Consequently, the precise and stable movement of the laser focus could be controlled, enabling highly stable 3D micromachining. The results showed that needed patterns could be machined on continuous surfaces using the proposed system. The proposed machining system is of great significance for broadening the application scenarios of laser machining.

4.
Adv Sci (Weinh) ; 11(23): e2400826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569510

RESUMO

Fully biodegradable packaging materials are demanded to resolve the issue of plastic pollution. However, the fresh food storage performance of biodegradable materials is generally much lower than that of plastics due to their high permeability, microbial friendliness, and limited stretchability and transparency. Here a biodegradable packaging material is reported with high fresh food storage performance based on an oil-infused bacterial cellulose (OBC) porous film. The oil infusion significantly improved cellulose's food-keeping performance by reducing its gas permeability, increasing its stretchability and transparency, and enabling the active release of green vapor-phase preservative molecules, while maintaining its intrinsically high degradability. Strawberries stored in a container with the OBC lid at 23 °C after 5 days exhibited a moldy rate of 0%, in contrast to the 100% moldy rate of those stored by poly(ethylene). Enhanced storage performance is also obtained on tomatoes, pork, and shrimp. The OBC film is naturally degraded after being buried in wet soil at 30 °C for 9 days, identical to the degradation rate of bacterial cellulose. The liquid seal strategy broadly applies to different celluloses, providing a general option for developing cellulose-based biodegradable packaging materials.


Assuntos
Celulose , Embalagem de Alimentos , Armazenamento de Alimentos , Embalagem de Alimentos/métodos , Celulose/metabolismo , Celulose/química , Armazenamento de Alimentos/métodos , Permeabilidade , Bactérias/metabolismo , Biodegradação Ambiental
5.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478611

RESUMO

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

6.
Opt Lett ; 49(4): 850-853, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359198

RESUMO

Lithium niobate (LN) crystal plays important roles in future integrated photonics, but it is still a great challenge to efficiently fabricate three-dimensional micro-/nanostructures on it. Here, a femtosecond laser direct writing-assisted liquid back-etching technology (FsLDW-LBE) is proposed to achieve the three-dimensional (3D) microfabrication of lithium niobate (LN) with high surface quality (Ra = 0.422 nm). Various 3D structures, such as snowflakes, graphic arrays, criss-cross arrays, and helix arrays, have been successfully fabricated on the surface of LN crystals. As an example, a microcone array was fabricated on LN crystals, which showed a strong second harmonic signal enhancement with up to 12 times bigger than the flat lithium niobate. The results indicate that the method provides a new approach for the microfabrication of lithium niobate crystals for nonlinear optics.

7.
Opt Lett ; 49(4): 911-914, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359214

RESUMO

In this Letter, a method for the fabrication of bifocal lenses is presented by combining surface ablation and bulk modification in a single laser exposure followed by the wet etching processing step. The intensity of a single femtosecond laser pulse was modulated axially into two foci with a designed computer-generated hologram (CGH). Such pulse simultaneously induced an ablation region on the surface and a modified volume inside the fused silica. After etching in hydrofluoric acid (HF), the two exposed regions evolved into a bifocal lens. The area ratio (diameter) of the two lenses can be flexibly adjusted via control of the pulse energy distribution through the CGH. Besides, bifocal lenses with a center offset as well as convex lenses were obtained by a replication technique. This method simplifies the fabrication of micro-optical elements and opens a highly efficient and simple pathway for complex optical surfaces and integrated imaging systems.

8.
Biomimetics (Basel) ; 8(8)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38132525

RESUMO

Inspired by periodically aligned micro/nanostructures on biological surfaces, researchers have been fabricating biomimetic structures with superior performance. As a promising and versatile tool, an ultrafast laser combined with other forms of processing technology has been utilized to manufacture functional structures, e.g., the biomimetic subwavelength structures to restrain the surface Fresnel reflectance. In this review paper, we interpret the biomimetic mechanism of antireflective subwavelength structures (ARSSs) for high-transmission windows. Recent advances in the fabrication of ARSSs with an ultrafast laser are summarized and introduced. The limitations and challenges of laser processing technology are discussed, and the future prospects for advancement are outlined, too.

9.
Proc Natl Acad Sci U S A ; 120(34): e2308804120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579173

RESUMO

The next-generation semiconductors and devices, such as halide perovskites and flexible electronics, are extremely sensitive to water, thus demanding highly effective protection that not only seals out water in all forms (vapor, droplet, and ice), but simultaneously provides mechanical flexibility, durability, transparency, and self-cleaning. Although various solid-state encapsulation methods have been developed, no strategy is available that can fully meet all the above requirements. Here, we report a bioinspired liquid-based encapsulation strategy that offers protection from water without sacrificing the operational properties of the encapsulated materials. Using halide perovskite as a model system, we show that damage to the perovskite from exposure to water is drastically reduced when it is coated by a polymer matrix with infused hydrophobic oil. With a combination of experimental and simulation studies, we elucidated the fundamental transport mechanisms of ultralow water transmission rate that stem from the ability of the infused liquid to fill-in and reduce defects in the coating layer, thus eliminating the low-energy diffusion pathways, and to cause water molecules to diffuse as clusters, which act together as an excellent water permeation barrier. Importantly, the presence of the liquid, as the central component in this encapsulation method provides a unique possibility of reversing the water transport direction; therefore, the lifetime of enclosed water-sensitive materials could be significantly extended via replenishing the hydrophobic oils regularly. We show that the liquid encapsulation platform presented here has high potential in providing not only water protection of the functional device but also flexibility, optical transparency, and self-healing of the coating layer, which are critical for a variety of applications, such as in perovskite solar cells and bioelectronics.

10.
BMC Genomics ; 24(1): 287, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248459

RESUMO

BACKGROUND: DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are no reports on C5-MTase and dMTase genes in heterodichogamous Cyclocarya paliurus. RESULTS: In this study, 6 CpC5-MTase and 3 CpdMTase genes were identified in diploid (2n = 2 × = 32) C. paliurus, while 20 CpC5-MTase and 13 CpdMTase genes were identified in autotetraploid (2n = 4 × = 64). 80% of identified genes maintained relatively fixed positions on chromosomes during polyploidization. In addition, we found that some DRM subfamily members didn't contain the UBA domain. The transcript abundance of CpC5-MTase and CpdMTase in male and female flowers of two morphs (protandry and protogyny) from diploidy was analyzed. Results showed that all genes were significantly up-regulated at the stage of floral bud break (S2), but significantly down-regulated at the stage of flower maturation (S4). At S2, some CpC5-MTase genes showed higher expression levels in PG-M than in PG-F, whereas some CpdMTase genes showed higher expression levels in PA-M than in PA-F. In addition, these genes were significantly associated with gibberellin synthesis-related genes (e.g. DELLA and GID1), suggesting that DNA methylation may play a role in the asynchronous floral development process through gibberellin signal. CONCLUSIONS: These results broaden our understanding of the CpC5-MTase and CpdMTase genes in diploid and autotetraploid C. paliurus, and provide a novel insight into regulatory mechanisms of DNA methylation in heterodichogamy.


Assuntos
Metilases de Modificação do DNA , Giberelinas , Masculino , Humanos , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , DNA/metabolismo , Diploide
11.
Light Sci Appl ; 12(1): 74, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918535

RESUMO

Photosensitivity in nature is commonly associated with stronger light absorption. It is also believed that artificial optical anisotropy to be the strongest when created by light with linear polarization. Contrary to intuition, ultrafast laser direct writing with elliptical polarization in silica glass, while nonlinear absorption is about 2.5 times weaker, results in form birefringence about twice that of linearly polarized light. Moreover, a larger concentration of anisotropic nanopores created by elliptically polarized light pulses is observed. The phenomenon is interpreted in terms of enhanced interaction of circularly polarized light with a network of randomly oriented bonds and hole polarons in silica glass, as well as efficient tunneling ionization produced by circular polarization. Applications to multiplexed optical data storage and birefringence patterning in silica glass are demonstrated.

12.
Genomics Proteomics Bioinformatics ; 21(3): 455-469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36775057

RESUMO

Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.


Assuntos
Duplicação Gênica , Folhas de Planta , Humanos , Folhas de Planta/metabolismo
13.
Opt Lett ; 48(3): 554-557, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723529

RESUMO

Optical waveguides prepared by femtosecond laser direct writing have birefringent properties, which can affect polarization encoding and entanglement on chips. Here, we first propose a shape-stress dual compensation fabrication scheme to decrease birefringence. Ultralow birefringent waveguides (1 × 10-9) were obtained by controlling the cross sectional shape of the main waveguide and adjusting the position of the auxiliary lines. In addition, we prepared polarization-independent directional coupler and demonstrated the evolution of polarization-independent waveguide array with different polarized light. In the future, ultralow birefringent waveguides will be widely applied in polarization encoding and entangled quantum photonic integrated circuits.

14.
Micromachines (Basel) ; 15(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38258160

RESUMO

Ultrathin flexible encapsulation (UFE) using multilayered films has prospects for practical applications, such as implantable and wearable electronics. However, existing investigations of the effect of mechanical bending strains on electrical properties after the encapsulation procedure provide insufficient information for improving the electrical stability of ultrathin silicon nanomembrane (Si NM)-based metal oxide semiconductor capacitors (MOSCAPs). Here, we used atomic layer deposition and molecular layer deposition to generate 3.5 dyads of alternating 11 nm Al2O3 and 3.5 nm aluminum alkoxide (alucone) nanolaminates on flexible Si NM-based MOSCAPs. Moreover, we bent the MOSCAPs inwardly to radii of 85 and 110.5 mm and outwardly to radii of 77.5 and 38.5 mm. Subsequently, we tested the unbent and bent MOSCAPs to determine the effect of strain on various electrical parameters, namely the maximum capacitance, minimum capacitance, gate leakage current density, hysteresis voltage, effective oxide charge, oxide trapped charge, interface trap density, and frequency dispersion. The comparison of encapsulated and unencapsulated MOSCAPs on these critical parameters at bending strains indicated that Al2O3/alucone nanolaminates stabilized the electrical and interfacial characteristics of the Si NM-based MOSCAPs. These results highlight that ultrathin Al2O3/alucone nanolaminates are promising encapsulation materials for prolonging the operational lifetimes of flexible Si NM-based metal oxide semiconductor field-effect transistors.

15.
Opt Express ; 29(19): 30952-30960, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614810

RESUMO

We propose a machine vision-based focus detection method (MVFD) for femtosecond laser machining. By analyzing the laser focus pattern, the defocus direction and distance are obtained simultaneously. The proposed technique presents high precision with an average error of 0.047 µm and a root mean square error (RMSE) of 0.055 µm. Moreover, the method is robust and is less affected by the tilted sample. For the curved surface sample, the average error and RMSE are 0.093 and 0.145 µm, respectively. Thus, the proposed focus detection method can be easily combined with laser processing equipment, which is widely used in large-range and high-precision femtosecond laser processing.

16.
Mitochondrial DNA B Resour ; 6(9): 2669-2671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34435115

RESUMO

Cyclocarya paliurus (Batal.) Iljinskaja, a monotypic species in Cyclocarya of Juglandaceae, is regarded as one of important medical plants in China. In order to reveal the alterations in chloroplast (cp) genome with nuclear genome duplication, we presented the complete cp genomes of C. paliurus, and firstly analyzed on the basis of ploidy type (tetraploid and diploid C. paliurus). The total length of the cp genome of tetraploid and diploid C. paliurus is 160,938 and 161,105 bp, respectively. Both type genome consist of a large single-copy (LSC) region (90,221 and 90,391 bp), a small single-copy (SSC) region (18,593 and 18,590 bp), and an pair of invert repeats (IRs) regions (26,062 and 26,062 bp). Tetraploid and diploid plastid genome contain 132 and 137 genes, 87 and 88 protein-coding genes, 37 and 39 tRNA genes, and both eight rRNA genes, respectively. Closely phylogenetic relationship by analyzing 23 cp genomes suggests that tetraploid C. paliurus probably originated from diploid C. paliurus.

17.
Opt Lett ; 46(3): 536-539, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528403

RESUMO

We systematically studied femtosecond laser-inscribed self-organized nanogratings and geometric phase elements such as a polarization diffraction focusing lens and Q-plate in sapphire crystal. Besides the void structures observed in the focus, nanogratings with periods of 150~300 nm were observed, depending on a nanoslit that took the role of a seeding effect by localized light field enhancement. The non-polarized refractive index change and birefringence were measured with values around 1∼2×10-3 and 6×10-4, respectively. Based on the laser-inscribed form birefringence, a geometric phase lens and Q-plate were successfully demonstrated in sapphire with high imaging and a focusing effect. We expect that our findings may promote the understanding of laser-induced nanogratings in bulk and potential applications in geometric phase elements.

18.
Light Sci Appl ; 9: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194955

RESUMO

Nanoscale surface texturing, drilling, cutting, and spatial sculpturing, which are essential for applications, including thin-film solar cells, photonic chips, antireflection, wettability, and friction drag reduction, require not only high accuracy in material processing, but also the capability of manufacturing in an atmospheric environment. Widely used focused ion beam (FIB) technology offers nanoscale precision, but is limited by the vacuum-working conditions; therefore, it is not applicable to industrial-scale samples such as ship hulls or biomaterials, e.g., cells and tissues. Here, we report an optical far-field-induced near-field breakdown (O-FIB) approach as an optical version of the conventional FIB technique, which allows direct nanowriting in air. The writing is initiated from nanoholes created by femtosecond-laser-induced multiphoton absorption, and its cutting "knife edge" is sharpened by the far-field-regulated enhancement of the optical near field. A spatial resolution of less than 20 nm (λ/40, with λ being the light wavelength) is readily achieved. O-FIB is empowered by the utilization of simple polarization control of the incident light to steer the nanogroove writing along the designed pattern. The universality of near-field enhancement and localization makes O-FIB applicable to various materials, and enables a large-area printing mode that is superior to conventional FIB processing.

19.
Light Sci Appl ; 9: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047624

RESUMO

Polarization and geometric phase shaping via a space-variant anisotropy has attracted considerable interest for fabrication of flat optical elements and generation of vector beams with applications in various areas of science and technology. Among the methods for anisotropy patterning, imprinting of self-assembled nanograting structures in silica glass by femtosecond laser writing is promising for the fabrication of space-variant birefringent optics with high thermal and chemical durability and high optical damage threshold. However, a drawback is the optical loss due to the light scattering by nanograting structures, which has limited the application. Here, we report a new type of ultrafast laser-induced modification in silica glass, which consists of randomly distributed nanopores elongated in the direction perpendicular to the polarization, providing controllable birefringent structures with transmittance as high as 99% in the visible and near-infrared ranges and >90% in the UV range down to 330 nm. The observed anisotropic nanoporous silica structures are fundamentally different from the femtosecond laser-induced nanogratings and conventional nanoporous silica. A mechanism of nanocavitation via interstitial oxygen generation mediated by multiphoton and avanlanche defect ionization is proposed. We demonstrate ultralow-loss geometrical phase optical elements, including geometrical phase prism and lens, and a vector beam convertor in silica glass.

20.
ACS Appl Mater Interfaces ; 12(1): 1924-1929, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809017

RESUMO

Easy-to-use sensors for ethanol solutions have broad applications ranging from monitoring alcohol quality to combating underage drinking. Although there are a number of electronic and colorimetric sensors available for determining alcohol concentration, there is currently no device that can concurrently provide a prompt, well-defined, quickly recoverable readout and remain readily affordable. Here, we developed a field-ready, colorimetric indicator that provides a fast, clear identification of ethanol-water mixtures between 0 and 40% based on the discoloration of a wetted photonic crystal. We cooperatively exploit the iridescence and the geometrical gating in silica inverse opal films (IOFs), together with a fine-tuned surface chemistry gradient, to distinguish ethanol concentrations by their wettability patterns in the different segments of the IOFs. The resultant all-in-one colorimetric sensor delivers a striking and instantaneous optical response at an ethanol concentration as low as 5%. We further improve the ease of use by seamlessly integrating this colorimetric platform with drinking glassware (a glass stirrer and a vial). This research provides an optimal means for colorimetric ethanol detection and is a step toward the immersible sensing of diverse molecules (e.g., biomarkers) in aqueous solutions without expensive laboratory tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...