Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(7): 2579-2586, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092183

RESUMO

Two-dimensional (2D) material-based photodetectors, especially those working in the infrared band, have shown great application potential in the thermal imaging, optical communication, and medicine fields. Designing 2D material photodetectors with broadened detection band and enhanced responsivity has become an attractive but challenging research direction. To solve this issue, we report a zirconium trisulfide (ZrS3) infrared photodetector with enhanced and broadened response with the assistance of the synergistic effects of extrinsic photoconduction and photogating effect. The ZrS3 photodetectors can detect infrared light up to 2 µm by extrinsic photoconduction and exhibit a responsivity of 100 mA W-1 under 1550 nm illumination. Furthermore, the ZrS3 infrared photodetectors with an oxide layer show a triple enhanced responsivity due to the photogating effect. Additionally, the infrared imaging capability of the ZrS3 infrared photodetectors is also demonstrated. This work provides a potential way to extend the response range and improve the responsivity for nanomaterial-based photodetectors at the same time.

2.
Chem Soc Rev ; 52(5): 1650-1671, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744507

RESUMO

The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.

3.
Light Sci Appl ; 11(1): 6, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974520

RESUMO

With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of ~0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W-1 at 3.5 µm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.

4.
Small ; 17(47): e2102855, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647416

RESUMO

2D materials, of which the carrier type and concentration are easily tuned, show tremendous superiority in electronic and optoelectronic applications. However, the achievements are still quite far away from practical applications. Much more effort should be made to further improve their performance. Here, p-type MoSe2 is successfully achieved via substitutional doping of Ta atoms, which is confirmed experimentally and theoretically, and outstanding homojunction photodetectors and inverters are fabricated. MoSe2 p-n homojunction device with a low reverse current (300 pA) exhibits a high rectification ratio (104 ). The analysis of dark current reveals the domination of the Shockley-Read-Hall (SRH) and band-to-band tunneling (BTB) current. The homojunction photodetector exhibits a large open-circuit voltage (0.68 V) and short-circuit currents (1 µA), which is suitable for micro-solar cells. Furthermore, it possesses outstanding responsivity (0.28 A W-1 ), large external quantum efficiency (42%), and a high signal-to-noise ratio (≈107 ). Benefiting from the continuous energy band of homojunction, the response speed reaches up to 20 µs. Besides, the Ta-doped MoSe2 inverter exhibits a high voltage gain (34) and low power consumption (127 nW). This work lays a foundation for the practical application of 2D material devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...