Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(4): 5836-5844, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688968

RESUMO

Adjusting sunlight and thermal radiation from windows is important in efficient energy-saving applications. A high solar modulation (ΔTsol) capability as well as a high luminous transmittance (Tlum) are the ultimate aim of smart windows. In this study, hydroxypropyl cellulose (HPC), W-doped VO2, and poly-N-iso-propylacrylamide (PNIPAm) composite hydrogel films were produced. The sample was prepared between two glasses to constitute a smart window with a sandwich construction structure, which exhibits a high Tlum of 87.16%, a ΔTsol of 65.71%, and a lower critical solution temperature (LCST) of 29 °C. The practical applications of conventional PNIPAm hydrogels are limited by the volume contraction of phase transition. Here, this challenge is addressed by the simple method of combining with HPC. The PNIPAm-2.5 wt % HPC hydrogels possess thermo-responsive contractility with a volume shrinkage rate of 8.5%. Even after 100 high- and low-temperature cyclic durability tests, the smart windows still exhibit a high solar modulation capability.

2.
RSC Adv ; 12(16): 9815-9820, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424934

RESUMO

A highly efficient and mild palladium-catalyzed hydroboration of unactivated internal alkynes in water is described. Both aryl- and alkyl-substituted alkynes proceeded smoothly within the reaction time to afford the desired vinylboronates in moderate to high yields. Bis (pinacolato) diboron was used to afford α- and ß-hydroborated products in the presence of HOAc. These reactions showed high reactivities and tolerance, thus providing a promising method for the synthesis of alkenyl boron compounds.

3.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268739

RESUMO

Thermochromic smart windows technology can intelligently regulate indoor solar radiation by changing indoor light transmittance in response to thermal stimulation, thus reducing energy consumption of the building. In recent years, with the development of new energy-saving materials and the combination with practical technology, energy-saving smart windows technology has received more and more attention from scientific research. Based on the summary of thermochromic smart windows by Yi Long research groups, this review described the applications of thermal responsive organic materials in smart windows, including poly(N-isopropylacrylamide) (PNIPAm) hydrogels, hydroxypropyl cellulose (HPC) hydrogels, ionic liquids and liquid crystals. Besides, the mechanism of various organic materials and the properties of functional materials were also introduced. Finally, opportunities and challenges relating to thermochromic smart windows and prospects for future development are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...