Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(23): 231101, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563204

RESUMO

For the newly discovered W-boson mass anomaly, one of the simplest dark matter (DM) models that can account for the anomaly without violating other astrophysical and experimental constraints is the inert two Higgs doublet model, in which the DM mass (m_{S}) is found to be within ∼54-74 GeV. In this model, the annihilation of DM via SS→bb[over ¯] and SS→WW^{*} would produce antiprotons and gamma rays, and may account for the excesses identified previously in both particles. Motivated by this, we reanalyze the AMS-02 antiproton and Fermi-LAT Galactic center γ-ray data. For the antiproton analysis, the novel treatment is the inclusion of the charge-sign-dependent three-dimensional solar modulation model as constrained by the time-dependent proton data. We find that the excess of antiprotons is more distinct than previous results based on the force-field solar modulation model. The interpretation of this excess as the annihilation of SS→WW^{*} (SS→bb[over ¯]) requires a DM mass of ∼40-80 (40-60) GeV and a velocity-averaged cross section of O(10^{-26}) cm^{3} s^{-1}. As for the γ-ray data analysis, besides adopting the widely used spatial template fitting, we employ an orthogonal approach with a data-driven spectral template analysis. The fitting to the GeV γ-ray excess yields DM model parameters overlapped with those to fit the antiproton excess via the WW^{*} channel. The consistency of the DM particle properties required to account for the W-boson mass anomaly, the GeV antiproton excess, and the GeV γ-ray excess suggests a common origin of them.

2.
Phys Rev Lett ; 107(24): 241802, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242991

RESUMO

The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → µ + ν(µ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...