Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 10(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057736

RESUMO

In the sphere of urban renewal of historic districts, preserving and innovatively reinterpreting traditional architectural styles remains a primary research focus. However, the modernization and adaptive reuse of traditional buildings often necessitate changes in their functionality. To cater to the demands of tourism in historic districts, many traditional residential buildings require conversion to commercial use, resulting in a mismatch between their external form and their internal function. This study explored an automated approach to transform traditional residences into commercially viable designs, offering an efficient and scalable solution for the modernization of historic architecture. We developed a methodology based on diffusion models, focusing on a dataset of nighttime shopfront facades. By training a low-rank adaptation (LoRA) model and integrating the ControlNet model, we enhanced the accuracy and stability of the generated images. The methodology's performance was validated through qualitative and quantitative assessments, optimizing the batch size, repetition, and learning rate configurations. These evaluations confirmed the method's effectiveness. Our findings significantly advance the modern commercial style transformation of historical architectural facades, providing a novel solution that maintains the aesthetic and functional integrity, thereby fostering breakthroughs in traditional design thinking and exploring new possibilities for the preservation and commercial adaptation of historical buildings.

2.
Huan Jing Ke Xue ; 45(6): 3270-3283, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897750

RESUMO

This study aimed to investigate the impact of spatiotemporal changes in land use on ecosystem carbon storage. The study analyzed the spatiotemporal changes in carbon storage in the study area based on land use data from five periods (1985, 1995, 2005, 2015, and 2020) using the InVEST model. The PLUS model was used to predict land use changes in the study area under four different scenarios (natural development, farmland protection, ecological protection, and double protection of farmland and ecology) in 2035, and the ecosystem carbon storage under different scenarios was estimated. The results of the study indicated that the farmland in the area under investigation had been decreasing consistently from 1985 to 2020, with a more rapid rate of change observed between 2015 and 2020. During this period, the overall dynamic attitude towards land use reached 34.62 %. Additionally, the carbon storage in the area showed a decreasing trend over the years, with a decrease of 1.55×105 t from 1985 to 2020. Between 2005 and 2015, the carbon storage showed a decrease of 1.22×105 t, with an average annual decrease of 1.22×104 t. The areas with higher carbon storage were located in the eastern part of the study area, whereas areas with lower carbon storage were found in the central and northwestern parts. Although the proportion of carbon storage in farmland decreased from 66.89 % to 57.73 %, farmland remained the most important carbon pool in the study area. The conversion of other land use types to grassland and forestland was advantageous for increasing ecosystem carbon storage. Finally, the study projected that by 2035, the carbon storage in the natural development scenario, the farmland protection scenario, the ecological protection scenario, and the dual protection scenario would be 81.77×105, 82.45×105, 82.82×105, and 82.51×105 t, respectively.

3.
J Mater Chem B ; 12(18): 4289-4306, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38595070

RESUMO

The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.


Assuntos
Materiais Biocompatíveis , Peptídeos , Nanomedicina Teranóstica , Humanos , Peptídeos/química , Peptídeos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Animais
4.
Angew Chem Int Ed Engl ; 63(28): e202404703, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655625

RESUMO

Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a ß-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via ß-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing ß-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Glicopeptídeos , Humanos , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Animais , Viroses/tratamento farmacológico , Viroses/metabolismo , Irinotecano/química , Irinotecano/farmacologia , Camundongos , Linhagem Celular Tumoral
5.
J Am Chem Soc ; 146(15): 10753-10766, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578841

RESUMO

Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quimera de Direcionamento de Proteólise , Antineoplásicos/farmacologia , Sulfatases , Proteólise , Peptídeos , Ubiquitina-Proteína Ligases
6.
Biomacromolecules ; 25(4): 2497-2508, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478850

RESUMO

Morphology-transformational self-assembly of peptides allows for manipulation of the performance of nanostructures and thereby advancing the development of biomaterials. Acceleration of the morphological transformation process under a biological microenvironment is important to efficiently implement the tailored functions in living systems. Herein, we report redox-regulated in situ seed-induced assembly of peptides via design of two co-assembled bola-amphiphiles serving as a redox-resistant seed and a redox-responsive assembly monomer, respectively. Both of the peptides are able to independently assemble into nanoribbons, while the seed monomer exhibits stronger assembling propensity. The redox-responsive monomer undergoes morphological transformation from well-defined nanoribbons to nanoparticles. Kinetics studies validate the role of the assembled inert monomer as the seeds in accelerating the assembly of the redox-responsive monomer. Alternative addition of oxidants and reductants into the co-assembled monomers promotes the redox-regulated assembly of the peptides facilitated by the in situ-formed seeds. The reduction-induced assembly of the peptide could also be accelerated by in situ-formed seeds in cancer cells with a high level of reductants. Our findings demonstrate that through precisely manipulating the assembling propensity of co-assembled monomers, the in situ seed-induced assembly of peptides could be achieved. Combining the rapid assembly kinetics of the seed-induced assembly with the common presence of redox agents in a biological microenvironment, this strategy potentially offers a new method for developing biomedical materials in living systems.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Substâncias Redutoras , Peptídeos/química , Nanoestruturas/química , Materiais Biocompatíveis , Oxirredução
7.
J Am Chem Soc ; 146(1): 330-341, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113388

RESUMO

Implementing dissipative assembly in living systems is meaningful for creation of living materials or even artificial life. However, intracellular dissipative assembly remains scarce and is significantly impeded by the challenges lying in precisely operating chemical reaction cycles under complex physiological conditions. Here, we develop organelle-mediated dissipative self-assembly of peptides in living cells fueled by GSH, via the design of a mitochondrion-targeting and redox-responsive hexapeptide. While the hexapeptide undergoes efficient redox-responsive self-assembly, the addition of GSH into the peptide solution in the presence of mitochondrion-biomimetic liposomes containing hydrogen peroxide allows for transient assembly of peptides. Internalization of the peptide by LPS-stimulated macrophages leads to the self-assembly of the peptide driven by GSH reduction and the association of the peptide assemblies with mitochondria. The association facilitates reversible oxidation of the reduced peptide by mitochondrion-residing ROS and thereby dissociates the peptide from mitochondria to re-enter the cytoplasm for GSH reduction. The metastable peptide-mitochondrion complexes prevent the thermodynamically equilibrated self-assembly, thus establishing dissipative assembly of peptides in stimulated macrophages. The entire dissipative self-assembling process allows for elimination of elevated ROS and decrease of pro-inflammatory cytokine expression. Creating dissipative self-assembling systems assisted by internal structures provides new avenues for the development of living materials or medical agents in the future.


Assuntos
Mitocôndrias , Peptídeos , Espécies Reativas de Oxigênio , Peptídeos/química
8.
Acta Biomater ; 175: 250-261, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122884

RESUMO

Suicide gene therapy is a promising therapeutic model for ovarian cancer (OC), while suffering from poor gene delivery and limited therapeutic efficacy. To address this concern, here we reported the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel (PTX). Connecting a lipid-like amphiphile and a hydrophilic arginine segment through disulfide bonds led to the enantiomeric peptides. The enantiomeric peptide assemblies are able to simultaneously uptake plasmid DNA (pDNA) and PTX based on electrostatic and hydrophobic interactions. The resulting co-assemblies underwent GSH-responsive disulfide cleavage and thereby promoting their assembly from nanoparticles to nanofibers, leading to the co-release of pDNA and PTX. Cellular and animal studies confirmed the co-delivery of pDNA and PTX into OC cells and the cell apoptosis by the enantiomeric peptides. In addition, in vitro and in vivo experiments supported the advanced uptake and cytotoxicity for L-type peptide vehicles by OC cells, and their great potential for OC-imaging, growth-inhibition and apoptosis-induction compared to D-counterpart. Our results demonstrate that the GSH-responsive morphology-transformable chiral peptide assemblies accurately and simultaneously release suicide genes and chemodrugs at tumor sites, thus providing a new strategy for the development of delivering vehicles for suicide gene and establishment of new therapeutic models for ovarian cancer. STATEMENT OF SIGNIFICANCE: Appropriate delivery carriers are essential for the clinical translation of cancer gene therapy, including the emerging suicide gene therapy. By combining the advantages of morphological transformable vehicles with the chirality peptides towards their bioactivity, we developed the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel. The GSH-responsive assembly of the enantiomeric peptides allows for precise release of plasmid DNA and paclitaxel in cancer cells, and promotes the formation of nanofibrils that facilitate gene entering nuclei for transfection. The enantiomeric peptide-based vehicles show the chirality-dependent capability for inducing cell apoptosis and inhibiting tumor growth. Our findings demonstrate a new strategy for developing therapeutic models for ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Humanos , Feminino , Paclitaxel/química , Terapia Genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Nanopartículas/química , Peptídeos/farmacologia , Peptídeos/química , DNA/genética , Dissulfetos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
9.
Angew Chem Int Ed Engl ; 62(49): e202314578, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37870078

RESUMO

The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.


Assuntos
Apoptose , Peptídeos , Apoptose/fisiologia , Morte Celular , Fosforilação , Peptídeos/farmacologia , Aminoácidos
10.
Macromol Rapid Commun ; 44(23): e2300308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37462116

RESUMO

Bio-inspired design of peptides represents one facile strategy for development of supramolecular monomers for self-assembly into well-defined nanostructures. Inspired by methylation of arginine during post-translational modification for manipulating protein functions, herein, the controllable self-assembly of peptides via rational incorporation of methylated arginine residues into bola-amphiphilic peptides is reported. A series of bola-amphiphilic peptides are designed and synthesized either containing natural arginine or methylated arginine and investigate the influence of arginine methylation on peptide assembly. This study finds that incorporation of symmetrically di-methylated arginine into oppositely charged hexapeptide hex-SDMAE leads to distinct assembling performance compare to natural peptide hex-RE. The findings demonstrate that the methylation of rationally designed peptide sequences allows for regulation of self-assembly of peptides, thus implying the great potential of arginine methylation in establishing controllable peptide assembling systems and creating in situ formulation of biomedical materials in the future.


Assuntos
Arginina , Peptídeos , Arginina/química , Peptídeos/química , Proteínas , Processamento de Proteína Pós-Traducional , Metilação
11.
Adv Colloid Interface Sci ; 313: 102862, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36848868

RESUMO

In nature, millions of creatures, such as geckos, tree frogs, octopuses, etc., have evolved fantastic switchable adhesion capabilities to climb swiftly on vertical even inverted surfaces or hunt for prey easily, adapting to harsh and unpredictable environments. Notably, these fascinating adhesive behaviors depend on interfacial forces (friction, van der Waals force, capillary force, vacuum suction, etc.), which primarily originate from the interactions between the soft micro/nanostructures evolved in the natural creatures and objects. Over the past few decades, these biological switchable adhesives have inspired scientists to explore and engineer desirable artificial adhesives. In this review, we summarized the state-of-the-art research on the ultra-fast adhesive motion of three types of biological organisms (gecko, tree frog, and octopus). Firstly, the basic adhesion principles in the three representative organisms, including micro/nanostructures, interfacial forces, and fundamental adhesion models, are reviewed. Then, we discussed the adhesion mechanisms of the prominent organisms from the perspective of soft contacts between micro/nanostructures and the substrates. Later, the mechanics-guided design principles of artificial adhesive surfaces, as well as the smart adhesion strategies, are summarized. The applications of these bio-inspired switchable adhesives are demonstrated, including wearable electronic devices, soft grippers, and climbing robots. The challenges and opportunities in this fast-growing field are also discussed.

12.
Chembiochem ; 24(3): e202200497, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278304

RESUMO

In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.


Assuntos
Aminoácidos , Nanoestruturas , Aminoácidos/química , Peptídeos/química , Sequência de Aminoácidos , Nanoestruturas/química , Materiais Biocompatíveis/química
13.
Adv Healthc Mater ; 12(5): e2202039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353887

RESUMO

Pharmacological targeting of endoplasmic reticulum (ER) stress represents one of important methods for disease therapy, which, however, is significantly suppressed by the ER homeostatic processe. Herein, a proof-of-concept strategy is reported for persistent stimulation of ER stress via preventing ER stress adaptation by utilizing multifunctional peptide assemblies. The strategy is established via creation of peptide assemblies with ER-targeting and chaperone glucose-regulated protein 78 (GRP78)-inhibiting functions. The peptides assemblies form well-defined nanofibers that are retrieved by ER organelles in human cervical cancer cell. The underlying mechanism studies unravel that the ER-accumulated peptide assemblies simultaneously stimulate ER stress and inhibit GRP78 refolding activity and thereby promoting endogenous protein aggregation. Combining the internalized peptide assemblies with the induced protein aggregates leads to the persistent stimulation of ER stress. The persistent ER stress induced by the peptide assemblies bestows their application in sensitizing cancer chemotherapy. Both in vitro and in vivo results confirm the enhanced cytotoxicity of drug toyocamycin against HeLa cells by peptide assemblies, thus efficiently inhibiting in vivo tumor growth. The strategy reported here discloses the fundamental keys for efficient promotion of ER stress, thus providing the guidance for development of ER-targeting-assisted cancer chemotherapy in the future.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias , Humanos , Células HeLa , Estresse do Retículo Endoplasmático , Chaperonas Moleculares , Peptídeos/farmacologia , Apoptose , Neoplasias/tratamento farmacológico
14.
J Nanobiotechnology ; 20(1): 340, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858873

RESUMO

Practice of tumor-targeted suicide gene therapy is hampered by unsafe and low efficient delivery of plasmid DNA (pDNA). Using HIV-Tat-derived peptide (Tat) to non-covalently form Tat/pDNA complexes advances the delivery performance. However, this innovative approach is still limited by intracellular delivery efficiency and cell-cycle status. In this study, Tat/pDNA complexes were further condensed into smaller, nontoxic nanoparticles by Ca2+ addition. Formulated Tat/pDNA-Ca2+ nanoparticles mainly use macropinocytosis for intercellular delivery, and their macropinocytic uptake was persisted in mitosis (M-) phase and highly activated in DNA synthesis (S-) phase of cell-cycle. Over-expression or phosphorylation of a mitochondrial chaperone, 75-kDa glucose-regulated protein (GRP75), promoted monopolar spindle kinase 1 (MPS1)-controlled centrosome duplication and cell-cycle progress, but also driven cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles. Further in vivo molecular imaging based on DF (Fluc-eGFP)-TF (RFP-Rluc-HSV-ttk) system showed that Tat/pDNA-Ca2+ nanoparticles exhibited highly suicide gene therapy efficiency in mouse model xenografted with human ovarian cancer. Furthermore, arresting cell-cycle at S-phase markedly enhanced delivery performance of Tat/pDNA-Ca2+ nanoparticles, whereas targeting GRP75 reduced their macropinocytic delivery. More importantly, in vivo targeting GRP75 combined with cell-cycle or macropinocytosis inhibitors exhibited distinct suicide gene therapy efficiency. In summary, our data highlight that mitochondrial chaperone GRP75 moonlights as a biphasic driver underlying cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles in ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Cálcio , DNA/química , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Proteínas de Choque Térmico HSP70 , Humanos , Proteínas de Membrana , Camundongos , Nanopartículas/química , Neoplasias Ovarianas/terapia , Plasmídeos , Transfecção
15.
Theranostics ; 12(10): 4818-4833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832082

RESUMO

Background: Dental caries is the most prevalent bacterial biofilm-induced disease. Current clinical prevention and treatment agents often suffer from adverse effects on oral microbiota diversity and normal tissues, predominately arising from the poor biofilm-targeting property of the agents. Methods: To address this concern, we herein report dual-sensitive antibacterial peptide nanoparticles pHly-1 NPs upon acid and lipid-binding for treatment of dental caries. Amino acid substitutions were performed to design the peptide pHly-1. The potential, morphology and secondary structure of pHly-1 were characterized to elucidate the mechanisms of its pH and lipid sensitivity. Bacterial membrane integrity assay and RNA-seq were applied to uncover the antimicrobial mechanism of peptides under acidic condition. The in vitro and ex vivo antibiofilm assays were used to determine the antibiofilm performance of pHly-1 NPs. We also carried out the in vivo anti-caries treatment by pHly-1 NPs on dental caries animal model. Oral microbiome and histopathological analyses were performed to assess the in vivo safety of pHly-1 NPs. Results: The pHly-1 peptide underwent the coil-helix conformational transition upon binding to bacterial membranes in the acidic cariogenic biofilm microenvironment, thereby killing cariogenic bacteria. Under normal physiological conditions, pHly-1 adopted a ß-sheet conformation and formed nanofibers, resulting in negligible cytotoxicity towards oral microbes. However, in acidic solution, pHly-1 NPs displayed reliable antibacterial activity against Streptococcus mutans, including standard and clinically isolated strains, mainly via cell membrane disruption, and also suppressed in vitro and human-derived ex vivo biofilm development. Compared to the clinical agent chlorhexidine, in vivo topical treatment with pHly-1 NPs showed an advanced effect on inhibiting rat dental caries development without adverse effects on oral microbiota diversity and normal oral or gastric tissues. Conclusion: Our results demonstrated the high efficacy of dual-sensitive antimicrobial peptides for the selective damage of bacterial biofilms, providing an efficient strategy for preventing and treating dental caries.


Assuntos
Cárie Dentária , Nanopartículas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Cariostáticos/farmacologia , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Humanos , Lipídeos , Nanopartículas/química , Peptídeos/farmacologia , Ratos
16.
J Am Chem Soc ; 144(21): 9312-9323, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587998

RESUMO

Self-sorting is a common phenomenon in eukaryotic cells and represents one of the versatile strategies for the formation of advanced functional materials; however, developing artificial self-sorting assemblies within living cells remains challenging. Here, we report on the GSH-responsive in situ self-sorting peptide assemblies within cancer cells for simultaneous organelle targeting to promote combinatorial organelle dysfunction and thereby cell death. The self-sorting system was created via the design of two peptides E3C16E6 and EVMSeO derived from lipid-inspired peptide interdigitating amphiphiles and peptide bola-amphiphiles, respectively. The distinct organization patterns of the two peptides facilitate their GSH-induced self-sorting into isolated nanofibrils as a result of cleavage of disulfide-connected hydrophilic domains or reduction of selenoxide groups. The GSH-responsive in situ self-sorting in the peptide assemblies within HeLa cells was directly characterized by super-resolution structured illumination microscopy. Incorporation of the thiol and ER-targeting groups into the self-sorted assemblies endows their simultaneous targeting of endoplasmic reticulum and Golgi apparatus, thus leading to combinatorial organelle dysfunction and cell death. Our results demonstrate the establishment of the in situ self-sorting peptide assemblies within living cells, thus providing a unique platform for drug targeting delivery and an alternative strategy for modulating biological processes in the future.


Assuntos
Complexo de Golgi , Peptídeos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Peptídeos/química , Transporte Proteico
17.
J Med Chem ; 65(9): 6764-6774, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35485832

RESUMO

Supramolecular prodrugs that combine the merits of stimuli-responsiveness and targeting ability in a controllable manner have shown appealing prospects in disease diagnostics and therapeutics. Herein, we report that a new theranostic agent with the host-guest-binding-activated photosensitization has been fabricated by a binary supramolecular assembly consisting of the permethyl-ß-cyclodextrin-grafted hyaluronic acid and a combretastatin A-4-appended porphyrin derivative. Illuminated by a red-light source, the production efficiency of singlet oxygen (1O2) pronouncedly increases by ∼60-fold once the porphyrin core is encapsulated by cyclodextrins. Consequently, the cell-selective fluorescence emission is dramatically enhanced, the microtubule-targeted drug is rapidly and completely released, and the 1O2-involved combinational treatment is simultaneously achieved both in vitro and in vivo. To be envisaged, this complexation-boosted light-activatable photosensitizing prodrug delivery system with improved photophysical performance and remarkable phototheranostic outcomes will make a significant contribution to the creation of more advanced stimulus-based biomaterials.


Assuntos
Ciclodextrinas , Fotoquimioterapia , Porfirinas , Pró-Fármacos , Ciclodextrinas/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Porfirinas/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
18.
J Am Chem Soc ; 144(15): 6907-6917, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388694

RESUMO

Enzyme-regulated in situ self-assembly of peptides represents one versatile strategy in the creation of theranostic agents, which, however, is limited by the strong dependence on enzyme overexpression. Herein, we reported the self-amplifying assembly of peptides precisely in macrophages associated with enzyme expression for improving the anti-inflammatory efficacy of conventional drugs. The self-amplifying assembling system was created via coassembling an enzyme-responsive peptide with its derivative functionalized with a protein ligand. Reduction of the peptides by the enzyme NAD(P)H quinone dehydrogenase 1 (NQO1) led to the formation of nanofibers with high affinity to the protein, thereby facilitating NQO1 expression. The improved NQO1 level conversely promoted the assembly of the peptides into nanofibers, thus establishing an amplifying relationship between the peptide assembly and the NQO1 expression in macrophages. Utilization of the amplifying assembling system as vehicles for drug dexamethasone allowed for its passive targeting delivery to acute injured lungs. Both in vitro and in vivo studies confirmed the capability of the self-amplifying assembling system to enhance the anti-inflammatory efficacy of dexamethasone via simultaneous alleviation of the reactive oxygen species side effect and downregulation of proinflammatory cytokines. Our findings demonstrate the manipulation of the assembly of peptides in living cells with a regular enzyme level via a self-amplification process, thus providing a unique strategy for the creation of supramolecular theranostic agents in living cells.


Assuntos
Nanofibras , Peptídeos , Dexametasona , Ligantes , Macrófagos/metabolismo , Nanofibras/química , Peptídeos/química
19.
ACS Appl Mater Interfaces ; 13(42): 49737-49753, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34648269

RESUMO

Peptide vaccines exhibit great potential in cancer therapy via eliciting antigen-specific host immune response and long-term immune memory to defend cancer cells. However, the low induced immune response of many developing vaccines implies the imperatives for understanding the favorable structural features of efficient cancer vaccines. Herein, we report on the two groups of self-adjuvanting peptide vaccines with distinct morphology and investigate the relationship between the morphology of peptide vaccines and the induced immune response. Two nanofibril peptide vaccines were created via co-assembly of a pentapeptide with a central 4-aminoproline residue, with its derivative functionalized with antigen epitopes derived from human papillomavirus E7 proteins, whereas utilization of a pentapeptide with a natural proline residue led to the formation of two nanoparticle peptide vaccines. The immunological results of dendritic cell (DCs) maturation and antigen presentation induced by the peptide assemblies implied the self-adjuvanting property of the resulting peptide vaccines. In particular, cellular uptake studies revealed the enhanced internalization and elongated retention of the nanofibril peptide vaccines in DCs, leading to their advanced performance in DC maturation, accumulation at lymph nodes, infiltration of cytotoxic T lymphocytes into tumor tissues, and eventually lysis of in vivo tumor cells, compared to the nanoparticle counterparts. The antitumor immune response caused by the nanofibril peptide vaccines was further augmented when simultaneously administrated with anti-PD-1 checkpoint blockades, suggesting the opportunity of the combinatorial immunotherapy by utilizing the nanofibril peptide vaccines. Our findings strongly demonstrate a robust relationship between the immune response of peptide vaccines and their morphology, thereby elucidating the critical role of morphological control in the design of efficient peptide vaccines and providing the guidance for the design of efficient peptide vaccines in the future.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/farmacologia , Neoplasias Orofaríngeas/terapia , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/terapia , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/síntese química , Vacinas Anticâncer/química , Linhagem Celular , Humanos , Imunoterapia , Teste de Materiais , Camundongos , Estrutura Molecular , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Neoplasias Orofaríngeas/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Vacinas de Subunidades Antigênicas/síntese química , Vacinas de Subunidades Antigênicas/química
20.
J Control Release ; 340: 35-47, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699869

RESUMO

Radiotherapy is one of the conventional tumor treatments, while its abscopal therapeutic efficacy is severely hampered by the immunosuppressive tumor microenvironment. To address this challenge, we herein report on the morphology-adaptable peptide-based therapeutics for efficiently reversing the immunosuppression in the combinatorial radio-immunotherapy through simultaneous checkpoint blocking and induction of immunogenic cell death. The peptide-based therapeutics were created via co-assembling a pentapeptide containing a 4-amino proline residue with its derivatives containing IDO-1 inhibitor NLG919. The resulting therapeutics underwent pH-adaptable morphological transformation between nanofibrils and nanoparticles and released NLG919 upon GSH cleavage. In vivo studies confirmed that the pH-adaptable morphologies of the therapeutics facilitated their tumor accumulation and retention at tumor sites compared to morphology-persistent counterparts, thus resulting in efficient delivery of IDO-1 inhibitors. Simultaneously treating the tumor-bearing mice with the therapeutics and external γ-ray radiation boosted the tumor immunogenicity via inducing ICD cascade of the tumor cells and reverse the immunosuppressive tumor microenvironment due to the inhibition of IDO-1 for depletion of tryptophan. Our findings strongly demonstrate that the morphology-adaptable peptide-based therapeutics exhibit the capability to reverse the immunosuppressive tumor microenvironment during irradiation, thus providing a new strategy for the combinatorial radio-immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Morte Celular Imunogênica , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Peptídeos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...