Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 24(11): 853-866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584532

RESUMO

INTRODUCTION: Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history. AIM: This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms. METHODS: Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition. CONCLUSION: This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.


Assuntos
Álcoois Benzílicos , Proliferação de Células , Colite , Glucosídeos , Antígeno 96 de Linfócito , Camundongos Endogâmicos BALB C , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Glucosídeos/farmacologia , Glucosídeos/química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Álcoois Benzílicos/farmacologia , Álcoois Benzílicos/química , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Transdução de Sinais/efeitos dos fármacos , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Masculino , Carcinogênese/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658097

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Assuntos
Aporfinas , Proliferação de Células , Sinoviócitos , Linfócitos T Reguladores , Células Th17 , Animais , Proliferação de Células/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Ratos , Humanos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Aporfinas/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Masculino , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Fibroblastos/efeitos dos fármacos , Colágeno , Apoptose/efeitos dos fármacos , Linhagem Celular
3.
Acta Pharmacol Sin ; 45(7): 1451-1465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491161

RESUMO

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.


Assuntos
Colite , Ginsenosídeos , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Via de Sinalização Wnt , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos
4.
J Ethnopharmacol ; 315: 116657, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37244409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Allium macrostemon Bunge (AMB), a widely distributed wild garlic plant, possesses a variety of health-promoting properties. Androgenetic alopecia (AGA) is a common disorder that affects quality of life. AIM OF THE STUDY: We sought to investigate whether AMB stimulates hair regrowth in AGA mouse model, and clarify the underlying molecular mechanisms. MATERIALS AND METHODS: The chemical constituents of AMB water extract were identified by ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q/TOF-MS) analysis. Cell viability assay and Ki-67 immunostaining were undertaken to evaluate the impacts of AMB on human hair dermal papilla cell (HDPC) proliferation. Wound-healing assay was undertaken to assess cell migration. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were performed to examine cell apoptosis. Western blotting, real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays were undertaken to determine the impacts of AMB on Wnt/ß-catenin signaling and growth factors expression in HDPC cells. AGA mouse model was induced by testosterone treatment. The effects of AMB on hair regeneration in AGA mice were demonstrated by hair growth measuring and histological scoring. The levels of ß-catenin, p-GSK-3ß, and Cyclin D1 in dorsal skin were measured. RESULTS: AMB promoted proliferation and migration, as well as the expression of growth factors in cultured HDPC cells. Meanwhile, AMB restrained apoptosis of HDPC cells by increasing the ratio of anti-apoptotic Bcl-2/pro-apoptotic Bax. Besides, AMB activated Wnt/ß-catenin signaling and thereby enhancing growth factors expression as well as proliferation of HDPC cells, which was abolished by Wnt signaling inhibitor ICG-001. In addition, an increase of hair shaft elongation was observed in mice suffering from testosterone-induced AGA upon the treatment of AMB extract (1% and 3%). Consistent with the in vitro assays, AMB upregulated the Wnt/ß-catenin signaling molecules in dorsal skin of AGA mice. CONCLUSION: This study demonstrated that AMB promoted HDPC cell proliferation and stimulated hair regrowth in AGA mice. Wnt/ß-catenin signaling activation, which induced production of growth factors in hair follicles and, eventually, contributed to the influence of AMB on the hair regrowth. Our findings may contribute to effective utilization of AMB in alopecia treatment.


Assuntos
Testosterona , beta Catenina , Camundongos , Humanos , Animais , beta Catenina/metabolismo , Testosterona/farmacologia , Plantas Comestíveis , Glicogênio Sintase Quinase 3 beta/metabolismo , Qualidade de Vida , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Via de Sinalização Wnt
5.
Front Pharmacol ; 12: 774560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795594

RESUMO

Irinotecan (CPT11), a broad-spectrum cytotoxic anticancer agent, induces a series of toxic side-effects. The most conspicuous side-effect is gastrointestinal mucositis, including nausea, vomiting, and diarrhea. A growing body of evidence indicates that bacteria ß-glucuronidase (GUS), an enzyme expressed by intestinal microbiota, converts the inactive CPT11 metabolite SN38G to the active metabolite SN38 to ultimately induce intestinal mucositis. We sought to explore the potential efficacy and underlying mechanisms of berberine on CPT11-induced mucositis. Our study showed that berberine (50 mg/kg; i. g.) mitigated the CPT11-induced loss of mucosal architecture, ulceration, and neutrophil infiltration. Meanwhile, berberine improved mucosal barrier function by increasing the number of globlet cells, protecting trans-endothelial electrical resistance (TEER), reducing permeability and increasing tight junction proteins expression. LC-MS analysis showed that berberine decreased the content of SN38 in feces, which correlated with decreases in both GUS activity and GUS-producing bacteria. Further molecular docking and Lineweaver-Burk plots analyses suggested that berberine functions as a potential non-competitive inhibitor against GUS enzyme. Of note, berberine maintained the anti-tumor efficacy of CPT11 in a tumor xenograft model while abrogating the intestinal toxicity of CPT11. Overall, we identified for the first time the remission effects of berberine on intestinal mucositis induced by CPT11 without impairing the anti-colorectal cancer efficacy of CPT11 partially via inhibiting bacterial GUS enzyme.

6.
Mol Cell Biochem ; 476(12): 4387-4403, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34460036

RESUMO

Colorectal cancer (CRC) is one of the most common human malignancies in the digestive tract with high mortality. Alantolactone (ATL), as a plant-derived sesquiterpene lactone, has shown a variety of pharmacological activities, such as antibacterial, anti-inflammatory, anti-virus and so on. However, the exact molecular mechanism of ATL in colorectal cancer remains largely unknown. Here, we performed a study to explore the effect and mechanism of ATL on colorectal cancer. The CCK-8 assay, colony formation assay, Wound-healing and Transwell assays were performed to evaluate the cytotoxic effect, antiproliferative effect, anti-migratory and anti-invasive properties of ATL respectively. The xenograft tumor model was established in Balb/c mice to evaluate the anti-tumor effect. The expression levels of proteins involved the MAPK-JNK/c-Jun signaling pathway were measured by Western blot and RT-qPCR both in cells and tumor tissues. The results showed that ATL could inhibit the cells activities of various colon cancer cell lines. Moreover, ATL could induce HCT-116 cells nuclear pyknosis, mitochondrial membrane potential loss, G0/G1 phase arrest, as well as enhance the proportion of apoptosis cells and inhibit colony formation. The migration distance and invasion rate of cells were significantly reduced after treated with ATL. Additionally, in the xenograft model, ATL (50 mg/kg) significantly decreased the tumor tumor volume and weight (p < 0.001). For the anti-colon cancer mechanism, the ATL showed the anti-proliferative and pro-apoptosis effect by activating MAPK-JNK/c-Jun signaling pathway. In conclusion, ATL exhibits anti-proliferation and apoptosis-promoting potential in colon cancer via the activation of MAPK-JNK/c-Jun signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases , Sesquiterpenos de Eudesmano/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
7.
World J Gastroenterol ; 26(30): 4378-4393, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32874052

RESUMO

The rapid development of metagenomics, metabolomics, and metatranscriptomics provides novel insights into the intestinal microbiota factors linked to inflammatory bowel disease (IBD). Multiple microorganisms play a role in intestinal health; these include bacteria, fungi, and viruses that exist in a dynamic balance to maintain mucosal homeostasis. Perturbations in the intestinal microbiota disrupt mucosal homeostasis and are closely related to IBD in humans and colitis in mice. Therefore, preventing or correcting the imbalance of microbiota may serve as a novel prevention or treatment strategy for IBD. We review the most recent evidence for direct or indirect interventions targeting intestinal microbiota for treatment of IBD in order to overcome the current limitations of IBD therapies and shed light on personalized treatment options.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Animais , Doenças Inflamatórias Intestinais/terapia , Intestinos , Camundongos
8.
Pharm Biol ; 58(1): 886-897, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32878512

RESUMO

CONTEXT: Obacunone, a limonoid abundantly found in Citrus fruits, exhibits a variety of bioactivities. OBJECTIVE: To investigate the effects of obacunone on a colorectal cancer (CRC) mouse model, and clarify its potential molecular mechanisms. MATERIALS AND METHODS: The male Balb/c mice were induced with azoxymethane and dextran sulfate sodium for 12 weeks. Obacunone (50 mg/kg) was administered via oral gavage three times every week until the end of the experiment. Disease indexes including body weight, spleen weight, bloody diarrhea, colon length, histopathological score, and tumor size were measured. The anti-proliferation activities of obacunone were analyzed by MTT or flow cytometry. The expression of protein and mRNA related to cell proliferation or inflammatory cytokines was determined by Western blot, q-PCR and IHC. RESULTS: Obacunone significantly alleviated bloody diarrhea, colon shortening (7.35 ± 0.2128 vs. 8.275 ± 0.2169 cm), splenomegaly, histological score (9 ± 0.5774 vs. 6 ± 0.5774) and reduced tumor size (4.25 ± 0.6196 vs. 2 ± 0.5669). Meanwhile, the expression of protein and mRNA related to cell proliferation or inflammatory cytokines was remarkably decreased in tumor tissue. Obacunone inhibited the proliferation activities of colorectal cancer cells. Moreover, obacunone induced colorectal cancer cells G1 and G2 phases arrest, and suppressed the expression of cell cycle genes. CONCLUSIONS: Obacunone could alleviate CRC via inhibiting inflammatory response and tumor cells proliferation. The results may contribute to the effective utilization of obacunone or its derivatives in the treatment of human CRC.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoxepinas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Limoninas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Neoplasias Colorretais/etiologia , Modelos Animais de Doenças , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos BALB C
9.
Biosci Rep ; 40(7)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32687156

RESUMO

Pinocembrin, a plant-derived flavonoid, has a variety of pharmacological activities, including anti-infection, anti-cancer, anti-inflammation, cardiovascular protection, etc. However, the mechanism of pinocembrin on the anti-colitis efficacy remains elusive and needs further investigation. Here, we reported that pinocembrin eased the severity of dextran sulfate sodium (DSS)-induced colitis in mice by suppressing the abnormal activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway in vivo. In addition, the gut microbiota was disordered in DSS colitis mice, which was associated with a significant decrease in microbiota diversity and a great shift in bacteria profiles; however, pinocembrin treatment improved the imbalance of gut microbiota and made it similar to that in normal mice. On the other hand, in vitro, pinocembrin down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, pinocembrin competitively inhibited the binding of LPS to myeloid differentiation protein 2 (MD2), thereby blocking the formation of receptor multimer TLR4/MD2·LPS. Furthermore, pinocembrin dose-dependently promoted the expression of tight junction proteins (ZO-1, Claudin-1, Occludin and JAM-A) in Caco-2 cells. In conclusion, our work presented evidence that pinocembrin attenuated DSS-induced colitis in mouse, at least in part, via regulating intestinal microbiota, inhibiting the over-activation of TLR4/MD2/NF-κB signaling pathway, and improving the barriers of intestine.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Disbiose/tratamento farmacológico , Flavanonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células CACO-2 , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Disbiose/induzido quimicamente , Disbiose/microbiologia , Flavanonas/uso terapêutico , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Antígeno 96 de Linfócito/metabolismo , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Receptor 4 Toll-Like/metabolismo
10.
Front Pharmacol ; 11: 474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372959

RESUMO

Alpinetin is a naturally occurring flavonoid from the ginger plants. We previously reported the identification of alpinetin as a ligand of human pregnane X receptor (hPXR). The current study investigated the role of alpinetin as a putative PXR activator in ameliorating chemically induced inflammatory bowel disease (IBD). We found that oral administration of alpinetin significantly alleviated the severity of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration, the levels of the pro-inflammatory mediators, and the PXR target genes in the colon. In vitro, alpinetin blocked the nuclear translocation of p-p65 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Further, alpinetin significantly upregulated PXR target genes and inhibited TNF-α-induced NF-κB-luciferase activity in LS174T colorectal cells; however, this regulatory effects were lost when cellular PXR gene was knocked down. In PXR transactivation assays, alpinetin increased both mouse and human PXR transactivation in a dose-dependent manner. Ligand occluding mutants, S247W/C284W and S247W/C284W/S208W, in hPXR-reporter assays, abrogated alpinetin-induced hPXR transactivation. Finally, alpinetin bound to the hPXR-ligand-binding domain (LBD) was confirmed by competitive ligand binding assay. The current study significantly extends prior observations by validating a PXR/NF-κB regulatory mechanism governing alpinetin's anti-inflammatory effects in a murine model of IBD.

11.
Front Microbiol ; 11: 497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296403

RESUMO

Obacunone, a natural limonoid compound abundantly distributed in citrus fruits, possesses various biological properties, such as antitumor, antioxidant, and antiviral activities. Recent studies suggested an anti-inflammatory activity of obacunone in vitro, but its efficacy on intestinal inflammation remains unknown. This study was designed to evaluate the effects and mechanisms of obacunone in ameliorating intestinal inflammation in a mouse model of ulcerative colitis (UC). We found that obacunone efficiently alleviated the severity of dextran sulfate sodium (DSS)-induced mouse UC by modulating the abnormal composition of the gut microbiota and attenuating the excessive activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling. The intestinal epithelial barrier was disrupted in DSS colitis mice, which was associated with activation of inflammatory signaling cascades. However, obacunone promoted the expression of tight junction proteins (TJP1 and occludin) and repressed the activation of inflammatory signaling cascades. In summary, our findings demonstrated that obacunone attenuated the symptoms of experimental UC in mice through modulation of the gut microbiota, attenuation of TLR4/NF-κB signaling cascades, and restoration of intestinal epithelial barrier integrity.

12.
Front Physiol ; 11: 577237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536931

RESUMO

Acacetin, a natural dietary flavonoid abundantly found in acacia honey and citrus fruits, reportedly exerts several biological effects, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effects of acacetin on intestinal inflammation remain unclear. We sought to investigate whether acacetin ameliorates inflammatory bowel disease (IBD) in mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Our results suggest that acacetin alleviates the clinical symptoms of DSS-induced colitis, as determined by body weight loss, diarrhea, colon shortening, inflammatory infiltration, and histological injury. Further studies showed that acacetin remarkably inhibited both the macrophage inflammatory response in vitro and levels of inflammatory mediators in mice with colitis. In addition, some features of the gut microbiota were disordered in mice with DSS-induced colitis, as evidenced by a significant reduction in microbiota diversity and a marked shift in bacterial profiles. However, acacetin treatment improved this imbalance and restored gut microbiota to levels that were similar to those in normal mice. In conclusion, our work presents evidence that acacetin attenuates DSS-induced colitis in mice, at least in part, by inhibiting inflammation and regulating the intestinal microbiota.

13.
Sci Rep ; 9(1): 16636, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719637

RESUMO

Alantolactone (ALA) is a sesquiterpene lactone with potent anti-inflammatory activity. However, the effect of ALA on intestinal inflammation remains largely unknown. The present study demonstrated that ALA significantly ameliorated the clinical symptoms of dextran sulfate sodium (DSS)-induced mice colitis as determined by body weight loss, diarrhea, colon shortening, inflammatory infiltration and histological injury. In mice exposed to DSS, ALA treatment significantly lowered pro-inflammatory mediators, including nuclear factor-kappa B (NF-κB) activation. In vitro, ALA inhibited NF-κB nuclear translocation and dose-dependently activated human/mouse pregnane X receptor (PXR), a key regulator gene in inflammatory bowel disease (IBD) pathogenesis. However, the pocket occluding mutants of the ligand-binding domain (LBD) of hPXR, abrogated ALA-mediated activation of the receptor. Overexpression of hPXR inhibited NF-κB-reporter activity and in this setting, ALA further enhanced the hPXR-mediated inhibition of NF-κB-reporter activity. Furthermore, silencing hPXR gene demonstrated the necessity for hPXR in downregulation of NF-κB activation by ALA. Finally, molecular docking studies confirmed the binding affinity between hPXR-LBD and ALA. Collectively, the current study indicates a beneficial effect of ALA on experimental IBD possibly via PXR-mediated suppression of the NF-κB inflammatory signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Lactonas/uso terapêutico , NF-kappa B/metabolismo , Receptor de Pregnano X/metabolismo , Sesquiterpenos de Eudesmano/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Receptor de Pregnano X/efeitos dos fármacos
14.
Microorganisms ; 7(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614539

RESUMO

Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.

15.
ACS Nano ; 13(7): 7966-7974, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31268304

RESUMO

Droplet deposition on superhydrophobic surfaces has been a great challenge owing to the shortness of the impact contact time. Despite recent research progress regarding flat superhydrophobic surfaces, improving deposition on ubiquitous wired and curved superhydrophobic leaves remains challenging as their surface structures promote asymmetric impacts, thereby shortening the contact times and increasing the likelihood of droplet splitting. Here, we propose a strategy to solve the deposition problems based on an analysis of the impact dynamics and a rational selection of additives. Combining the prominent extension property of flexible polymers with surface tension reduction of the surfactant, the well-chosen binary additives cooperatively solve retention and coverage problems by limiting the fragment and enhancing local pinning and wetting processes at a very low usage. This work advances the understanding of droplet deposition by rationally selecting additives based on the impact dynamics, which is believed to be useful in a variety of spraying, coating, and printing applications.

16.
Molecules ; 23(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880739

RESUMO

Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD) in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO) activity, reducing tumor necrosis factor (TNF)-α secretion, and inhibiting nitric oxide (NO) production in colitis mice. The degradation of inhibitory κBα (IκBα), phosphorylation of p65, and mRNA expression of nuclear factor κB (NF-κB) target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and dose-dependently inhibited the activity of NF-κB-luciferase in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-κB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzodioxóis/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lignanas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Benzodioxóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sulfato de Dextrana/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Lignanas/farmacologia , Luciferases/antagonistas & inibidores , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Peroxidase/antagonistas & inibidores , Proteólise , Células RAW 264.7 , Fator de Necrose Tumoral alfa/antagonistas & inibidores
17.
Sci Rep ; 7(1): 16374, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180692

RESUMO

Baicalein (5,6,7-trihydroxyflavone), a predominant bioactive component isolated from the root of Scutellaria baicalensis Georgi, has established potent anti-inflammatory activity via multi-targeted mechanisms. However, little is known about the effect of baicalein on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, which shares pathology related to human Crohn's disease (CD). The present study demonstrated that baicalein alleviated the severity of TNBS-induced colitis in mice by decreasing the activity of myeloperoxidase (MPO) and the expression of pro-inflammatory mediators. The decline in the activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) correlated with a decrease in the expression of mucosal toll-like receptor 4 (TLR4) and its adaptor myeloid differentiation factor 88 (MyD88). In vitro, baicalein down-regulated the TLR4/MyD88 signaling cascades (NF-κB and MAPKs) in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, baicalein bound to the hydrophobic region of the myeloid differentiation protein-2 (MD-2) pocket and inhibited the formation of the LPS-induced MD-2/TLR4 complex. Furthermore, baicalein reduced NOD-like receptor 3 (NLRP3) inflammasome activation and downstream interleukin-1ß expression in a dose-dependent manner. Our study provided evidence for the first time that baicalein attenuated TNBS-induced colitis, at least in part, via inhibition of TLR4/MyD88 signaling cascade as well as inactivation of NLRP3 inflammasome.


Assuntos
Colite/etiologia , Colite/metabolismo , Flavanonas/farmacologia , Inflamassomos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Flavanonas/química , Humanos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Moleculares , Conformação Molecular , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Receptor 4 Toll-Like/química , Ácido Trinitrobenzenossulfônico/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...