Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 223: 118926, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044799

RESUMO

Urbanization impacts land, air, and water, creating environmental gradients between cities and rural areas. Urban stormwater delivers myriad co-occurring, understudied, and mostly unregulated contaminants to aquatic ecosystems, causing a pollution gradient. Recipient ecosystems host interacting species that can affect each others' growth and responses to these contaminants. For example, plants and their microbiomes often reciprocally increase growth and contaminant tolerance. Here, we identified ecological variables affecting contaminant fate across an urban-rural gradient using 50 sources of the aquatic plant Lemna minor (duckweed) and associated microbes, and two co-occurring winter contaminants of temperate cities, benzotriazole and salt. We conducted experiments totalling >2,500 independent host-microbe-contaminant microcosms. Benzotriazole and salt negatively affected duckweed growth, but not microbial growth, and duckweeds maintained faster growth with their local, rather than disrupted, microbiota. Benzotriazole transformation products of plant, microbial, and phototransformation pathways were linked to duckweed and microbial growth, and were affected by salt co-contamination, microbiome disruption, and source sites of duckweeds and microbes. Duckweeds from urban sites grew faster and enhanced phytotransformation, but supported less total transformation of benzotriazole. Increasing microbial community diversity correlated with greater removal of benzotriazole, but taxonomic groups may explain shifts across transformation pathways: the genus Aeromonas was linked to increasing phototransformation. Because benzotriazole toxicity could depend on amount and type of in situ transformation, this variation across duckweeds and microbes could be harnessed for better management of urban stormwater. Broadly, our results demonstrate that plant-microbiome interactions harbour manipulable variation for bioremediation applications.


Assuntos
Araceae , Microbiota , Bactérias , Biodegradação Ambiental , Água Doce , Urbanização , Água
2.
Sci Total Environ ; 833: 155232, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427625

RESUMO

Triclosan is an antimicrobial chemical present in consumer products that is frequently detected in aquatic environments. In this research, we investigated the role of a common freshwater microalgae species, Euglena gracilis for triclosan uptake and transformation in open-water treatment wetlands. Lab-scale wetland bioreactors were created under various conditions of light (i.e., continuous (white) light, red light, and in the dark), media (i.e., wetland, autoclaved wetland, Milli-Q, and growth media water), and presence or absence of algae. Triclosan and its potential transformation products were identified in the water and algae phases. Triclosan transformation occurred most rapidly with reactors that received continuous (white) light, with pseudo first-order rate constants, k, ranging from 0.035 to 0.292 day-1. This indicates that phototransformation played a major role in triclosan transformation during the day, despite light screening by algae. Algae contributed to the uptake and transformation of triclosan in all reactors, and algae and bacteria both contributed to triclosan biotransformation under dark conditions, representative of nighttime conditions. Some transformation products were formed and further transformed, e.g., triclosan-O-sulfate, methoxy and diglucosyl conjugate of hydroxylated triclosan, and dimethoxy and glucosyl conjugate of 2,4-dichlorophenol, suggesting their minimal accumulation over the 25 days of the experiments. This study shows that the combined action of light, microbes, and algae allows the safe transfer and transformation of triclosan in open-water treatment wetlands.


Assuntos
Clorófitas , Euglena gracilis , Microalgas , Triclosan , Poluentes Químicos da Água , Clorófitas/metabolismo , Euglena gracilis/metabolismo , Microalgas/metabolismo , Triclosan/metabolismo , Poluentes Químicos da Água/análise
3.
Am J Bot ; 107(2): 273-285, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31879950

RESUMO

PREMISE: Outcomes of species interactions, especially mutualisms, are notoriously dependent on environmental context, and environments are changing rapidly. Studies have investigated how mutualisms respond to or ameliorate anthropogenic environmental changes, but most have focused on nutrient pollution or climate change and tested stressors one at a time. Relatively little is known about how mutualisms may be altered by or buffer the effects of multiple chemical contaminants, which differ fundamentally from nutrient or climate stressors and are especially widespread in aquatic habitats. METHODS: We investigated the impacts of two contaminants on interactions between the duckweed Lemna minor and its microbiome. Sodium chloride (salt) and benzotriazole (a corrosion inhibitor) often co-occur in runoff to water bodies where duckweeds reside. We tested three L. minor genotypes with and without the culturable portion of their microbiome across field-realistic gradients of salt (3 levels) and benzotriazole (4 levels) in a fully factorial experiment (24 treatments, tested on each genotype) and measured plant and microbial growth. RESULTS: Stressors had conditional effects. Salt decreased both plant and microbial growth and decreased plant survival more as benzotriazole concentrations increased. In contrast, benzotriazole did not affect microbial abundance and even benefited plants when salt and microbes were absent, perhaps due to biotransformation into growth-promoting compounds. Microbes did not ameliorate duckweed stressors; microbial inoculation increased plant growth, but not at high salt concentrations. CONCLUSIONS: Our results suggest that multiple stressors matter when predicting responses of mutualisms to global change and that beneficial microbes may not always buffer hosts against stress.


Assuntos
Araceae , Microbiota , Desenvolvimento Vegetal , Cloreto de Sódio
4.
Sci Total Environ ; 695: 133772, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425979

RESUMO

The widespread distribution of pharmaceuticals and personal care products (PPCPs), particularly in the built environment, has led to increased concern about their effects on both human and ecosystem health. In this research, we investigated the role of algae species Scenedesmus obliquus and Chlorella vulgaris in governing PPCP transfer and transformation mechanisms in algae-containing environments. Lab-scale algal bioreactors were created under various conditions of light, water matrix, and sterilization method to isolate and elucidate reaction mechanisms affecting carbamazepine, ibuprofen, gemfibrozil, and triclosan. The parent compounds and their potential transformation products were analyzed in both the water and algae phases. The results showed that ibuprofen was primarily biotransformed due to synergistic relationships between the algae and the bacteria. Ibuprofen biotransformation products tentatively identified as hydroxy-ibuprofen, carboxy-ibuprofen, and 4-isobutylcatechol were detected in several samples. In all the reactors exposed to light, triclosan underwent both phototransformation and biotransformation. Triclosan biotransformation took place in Scenedesmus obliquus, as demonstrated by the presence of triclosan-O-sulfate in the algae extracts. No evidence of significant carbamazepine and gemfibrozil transfer or transformation was observed under the experimental conditions tested. These results suggest that microalgal-bacterial consortia can facilitate PPCP transformation in algae-based passive water treatment systems.


Assuntos
Cosméticos/análise , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Chlorella vulgaris/metabolismo , Cosméticos/metabolismo , Microalgas/metabolismo , Preparações Farmacêuticas/metabolismo , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...