Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Microbiol. ; 45(4): 1303-1308, Oct.-Dec. 2014. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-28061

RESUMO

A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation.


Assuntos
Benzaldeídos/metabolismo , Redes e Vias Metabólicas , Pseudomonas putida/metabolismo , Biotransformação , Hidroxibenzoatos/metabolismo , Nitrobenzoatos/metabolismo , Pseudomonas putida/classificação , Pseudomonas putida/genética
2.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1303-1308, Oct.-Dec. 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-741280

RESUMO

A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation.


Assuntos
Benzaldeídos/metabolismo , Redes e Vias Metabólicas , Pseudomonas putida/metabolismo , Biotransformação , Hidroxibenzoatos/metabolismo , Nitrobenzoatos/metabolismo , Pseudomonas putida/classificação , Pseudomonas putida/genética
3.
Braz J Microbiol ; 45(4): 1303-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763034

RESUMO

A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation.


Assuntos
Benzaldeídos/metabolismo , Redes e Vias Metabólicas , Pseudomonas putida/metabolismo , Biotransformação , Hidroxibenzoatos/metabolismo , Nitrobenzoatos/metabolismo , Pseudomonas putida/classificação , Pseudomonas putida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA