Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683924

RESUMO

A π-conjugated small molecule N, N'-bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB) was introduced into poly(9-vinylcarbazole) (PVK) as a hole transport layer (HTL) in inverted perovskite solar cells (PSCs). The NPB doping induces a better perovskite crystal growth, resulting in perovskite with a larger grain size and less defect density. Thus, the VOC, JSC, and FF of the PSC were all enhanced. Experimental results show that it can be ascribed to the reduction of surface roughness and improved hydrophilicity of the HTL. The effect of NPB on the aggregation of PVK was also discussed. This work demonstrates the great potential of PVK as the HTL of PSCs and provides an attractive alternative for HTL to realize high-efficiency PSCs.

2.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160390

RESUMO

Nonradiative recombination losses caused by defects in the perovskite layer seriously affects the efficiency and stability of perovskite solar cells (PSCs). Hence, defect passivation is an effective way to improve the performance of PSCs. In this work, trichloromelamine (TCM) was used as a defects passivator by adding it into the perovskite precursor solution. The experimental results show that the power conversion efficiency (PCE) of PSC increased from 18.87 to 20.15% after the addition of TCM. What's more, the environmental stability of PSCs was also improved. The working mechanism of TCM was thoroughly investigated, which can be ascribed to the interaction between the -NH- group and uncoordinated lead ions in the perovskite. This work provides a promising strategy for achieving highly efficient and stable PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...