Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 648: 1025-1033, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343489

RESUMO

Herein, an urchin-like Fe2O3@In2S3 hybrid composite is designed and synthesized using a facile process. The composite efficiently harvests light in both the ultraviolet and visible regions, and the unique hierarchical structure provides several advantages for photocatalytic applications: (i) a suitable band-matching structure and broadband-light absorbing capacity enable the reduction of CO2 into hydrocarbon, (ii) the extensive network of interfacial contact between nano-sized Fe2O3 and In2S3 significantly increases the separation of charge carriers and enhances the utilization of photogenerated electron-hole pairs, and (iii) an abundance of surface oxygen vacancies provide numerous active sites for CO2 molecule adsorption. The optimized Fe2O3@In2S3 composite generated CO from the photocatalytic reduction of CO2 at a rate of 42.83 µmol·g-1·h-1, and no signs of deactivation were observed during continued testing for 32 h under 300 W Xe lamp irradiation.

2.
J Colloid Interface Sci ; 628(Pt B): 768-776, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029591

RESUMO

Utilizing solar energy to convert carbon dioxide (CO2) into chemical fuels could simultaneously mitigate the greenhouse effect and fossil fuel crisis. Herein, a heterogeneous photocatalyst of ZnO nanofiber deposited by Pt nanoparticles was successfully synthesized toward photocatalytic CO2 reduction via radio-frequency thermal plasma and photo-deposition method. The Pt nanoparticles were introduced on the surface of ZnO nanofibers to broaden the light absorption and utilization, increase the additional reaction active sites and facilitate the separation of photo-generated electron/hole pairs. Combined with the natural advantages of short transfer path of charge carriers and self-support effecting in humid reaction environment for nanofibers, the Pt/ZnO hetero-junction nanocomposites displayed superior photocatalytic activity for CO2 reduction with respect to bare ZnO nanofibers, affording a CO-production rate as high as 45.76 µmol g-1 h-1 under 300 W Xe lamp irradiation within a gas-solid reaction system. Furthermore, in-suit Fourier transform infrared (FTIR) spectra were applied to unveil the details during photocatalytic CO2 reduction. This work presents a hetero-junction nanocomposite photocatalyst based on eco-friendly semiconductor and metal materials.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685093

RESUMO

In this paper, we report a thermal conductive polymer composite that consists of silicone rubber (SR) and branched Al2O3 (B-Al2O3). Owing to the unique two-dimensional branched structure, B-Al2O3 particles form a continuous three-dimensional network structure by overlapping each other in the matrix, serving as a continuous heat conductive pathway. As a result, the polymer composite with a 70 wt% filler achieves a maximum thermal conductivity of 1.242 Wm-1 K-1, which is equivalent to a significant enhancement of 521% compared to that of a pure matrix. In addition, the composite maintains a high volume resistivity of 7.94 × 1014 Ω·cm with the loading of 70 wt%, indicating that it meets the requirements in the field of electrical insulation. Moreover, B-Al2O3 fillers are well dispersed (no large agglomerates) and form a strong interfacial adhesion with the matrix. Therefore, the thermal decomposition temperature, residual mass, tensile strength, modulus and modulus of toughness of composites are significantly improved simultaneously. This strategy provides new insights for the design of high-performance polymer composites with potential application in advanced thermal management in modern electronics.

4.
Nanomaterials (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578661

RESUMO

ZrB2 is of particular interest among ultra-high temperature ceramics because it exhibits excellent thermal resistance at high temperature, as well as chemical stability, high hardness, low cost, and good electrical and thermal conductivity, which meet the requirements of high-temperature components of hyper-sonic aircraft in extreme environments. As raw materials and basic units of ultra-high temperature ceramics and their composites, ZrB2 powders provide an important way for researchers to improve material properties and explore new properties by way of synthesis design and innovation. In recent years, the development of ZrB2 powders' synthesis method has broken through the classification of traditional solid-phase method, liquid-phase method, and gas-phase method, and there is a trend of integration of them. The present review covers the most important methods used in ZrB2 nanopowder synthesis, focusing on the solid-phase synthesis and its improved process, including modified self-propagating high-temperature synthesis, solution-derived precursor method, and plasma-enhanced exothermic reaction. Specific examples and strategies in synthesis of ZrB2 nano powders are introduced, followed by challenges and the perspectives on future directions. The integration of various synthesis methods, the combination of different material components, and the connection between synthesis and its subsequent application process is the trend of development in the future.

5.
Nanomaterials (Basel) ; 10(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322726

RESUMO

Ultrafine ZrB2-ZrC composite powders were synthesized via a radiofrequency (RF) thermal plasma process. Numerical simulation and thermodynamic analysis were conducted to predict the synthesis process, and experimental work was performed accordingly to demonstrate its feasibility. The as-prepared samples were characterized by XRD, FESEM, particle size analyzer, nitrogen/oxygen analyzer, Hall flowmeter, and the Brunner-Emmet-Teller (BET) measurements. The thermodynamic analysis indicated that ZrB2 was preferentially generated, rather than ZrC, and numerical simulation revealed that the solid raw materials could disperse well in the gaseous reactants, and experimental work showed that free carbon particles were easily removed from the products and the elements of Zr, B, C, and O exhibited a uniform distribution. Finally, ZrB2-ZrC composite powders with a particle size of about 100 nm were obtained, the surface area of which was 32.15 m2/g and the apparent density was 0.57 g/cm3.

6.
ACS Nano ; 13(9): 10179-10190, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31424917

RESUMO

Silicon-carbon (Si-C) hybrids have been proven to be the most promising anodes for the next-generation lithium-ion batteries (LIBs) due to their superior theoretical capacity (∼4200 mAh g-1). However, it is still a critical challenge to apply this material for commercial LIB anodes because of the large volume expansion of Si, unstable solid-state interphase (SEI) layers, and huge internal stresses upon lithiation/delithiation. Here, we propose an engineering concept of multiscale buffering, taking advantage of a nanosized Si-C nanowire architecture through fabricating specific microsized wool-ball frameworks to solve all the above-mentioned problems. These wool-ball-like frameworks, prepared at high yields, nearly matching industrial scales (they can be routinely produced at a rate of ∼300 g/h), are composed of Si/C nanowire building blocks. As anodes, the Si-C wool-ball frameworks show ultrastable Li+ storage (2000 mAh g-1 for 1000 cycles), high initial Coulombic efficiency of ∼90%, and volumetric capacity of 1338 mAh cm-3. In situ TEM proves that the multiscale buffering design enables a small volume variation, only ∼19.5%, reduces the inner stresses, and creates a very thin SEI. The perfect multiscale elastic buffering makes this material more stable compared to common Si nanoparticle-assembled counterpart electrodes.

7.
Materials (Basel) ; 12(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277239

RESUMO

Fouling is a great problem that significantly affects the continuous operation for large-scale radio-frequency (RF) thermal plasma synthesizing nanopowders. In order to eliminate or weaken the phenomenon, numerical simulations based on FLUENT software were founded to investigate the effect of operation parameters, including feeding style of central gas and sheath gas, on plasma torches. It is shown that the tangential feeding style of central gas brings serious negative axial velocity regions, which always forces the synthesized nanopowders to "back-mix", and further leads to the fouling of the quartz tube. Moreover, it is shown that sheath gas should be tangentially fed into the plasma reactor to further eliminate the gas stream's back-mixing. However, when this feeding style is applied, although the negative axial velocity region is decreased, the plasma gas and kinetic energy of the vapor phase near the wall of the plasma reactor are less and lower, respectively; as a result, that plasma flame is more difficult to be arced. A new plasma arcing method by way of feeding gun instead of torch wall was proposed and put in use. The fouling problem has been well solved and plasma arcing is well ensured, and as a result, the experiment on large-scale production of nanopowders can be carried out for 8 h without any interruption, and synthesized Si and Al2O3 nanopowders exhibit good dispersion and sphericity.

8.
Materials (Basel) ; 12(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071982

RESUMO

Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction.

9.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627135

RESUMO

The development of rechargeable batteries with high performance is considered to be a feasible way to satisfy the increasing needs of electric vehicles and portable devices. It is of vital importance to design electrodes with high electrochemical performance and to understand the nature of the electrode/electrolyte interfaces during battery operation, which allows a direct observation of the complicated chemical and physical processes within the electrodes and electrolyte, and thus provides real-time information for further design and optimization of the battery performance. Here, the recent progress in in situ techniques employed for the investigations of material structural evolutions is described, including characterization using neutrons, X-ray diffraction, and nuclear magnetic resonance. In situ techniques utilized for in-depth uncovering the electrode/electrolyte phase/interface change mechanisms are then highlighted, including transmission electron microscopy, atomic force microscopy, X-ray spectroscopy, and Raman spectroscopy. The real-time monitoring of lithium dendrite growth and in situ detection of gas evolution during charge/discharge processes are also discussed. Finally, the major challenges and opportunities of in situ characterization techniques are outlined toward new developments of rechargeable batteries, including innovation in the design of compatible in situ cells, applications of dynamic analysis, and in situ electrochemistry under multi-stimuli. A clear and in-depth understanding of in situ technique applications and the mechanisms of structural evolutions, surface/interface changes, and gas generations within rechargeable batteries is given here.

10.
ACS Appl Mater Interfaces ; 7(4): 2873-81, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25558921

RESUMO

In this paper, single-crystalline α-Si3N4 nanospheres with uniform size of ∼50 nm are successfully synthesized by using a radio frequency (RF) thermal plasma system in a one-step and continuous way. All Si3N4 nanoparticles present nearly perfect spherical shape with a narrow size distribution, and the diameter is well-controlled by changing the feeding rate. Compact Si3N4/PR (PR = phenolic resin) composites with high thermal conductivity, excellent temperature stability, low dielectric loss tangent, and enhanced breakdown strength are obtained by incorporating the as-synthesized Si3N4 nanospheres. These enhanced properties are the results of good compatibility and strong interfacial adhesion between compact Si3N4 nanospheres and polymer matrix, as large amount of Si3N4 nanospheres can uniformly disperse in the polymer matrix and form thermal conductive networks for diffusion of heat flow.

11.
ACS Appl Mater Interfaces ; 7(4): 2856-66, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25580563

RESUMO

In this paper, a simple way is developed for the synthesis of Cr-doped WO3 polyhedra controlled by tailoring intrinsic thermodynamic properties in RF thermal plasma. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are used to characterize the detail structures and surface/near-surface chemical compositions of the as-prepared products. Kinetic factors showed little effects on the equilibrium morphology of Cr-doped WO3 polyhedra, while equilibrium morphologies of WO3 polyhedra can be controlled by the thermodynamic factor (Cr doping). Set crystal growth habits of pure WO3 as an initial condition, coeffects of distortions introduced by Cr into the WO3 matrix, and a chromate layer on the crystal surface could reduce the growth rates along [001], [010], and [100] directions. The morphology evolution was turning out as the following order with increasing Cr dopants: octahedron-truncated octahedron-cuboid. 2.5 at. % Cr-doped WO3 polyhedra exhibit the highest sensing response due to coeffects of exposed crystal facets, activation energy, catalytic effects of Cr, and particle size on the surface reaction and electron transport units. By simply decorating Au on Cr-doped WO3 polyhedra, the sensing responses, detection limit, and response-recovery properties were significantly improved.

12.
J Nanosci Nanotechnol ; 13(6): 4370-4, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862505

RESUMO

Hexanal is one of the most important aroma compounds which play a crucial role in the odor of cereal, meat, fruit, plant oils and wood. The detection technique of hexanal has attracted more attention. In this paper, the nano-SnO2 flat-type coplanar hexanal gas-sensor arrays were fabricated by screen-printing technique based on nano-SnO2 powders prepared by hydrothermal method. The test results show that the nano-SnO2 flat-type coplanar gas sensor arrays have good hexanal gas-sensing characteristics, such as low detection limit and high sensitivity. Especially, the gas sensitivity of the nano-SnO2 gas sensor arrays to 100 ppb hexanal can reach 2.8 at 350 degrees C. The nanometer size effect of nano-SnO2 and nature property of hexanal caused the ppb-level hexanal gas sensing characteristics.

13.
Appl Spectrosc ; 67(8): 930-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23876732

RESUMO

Palladium-doped nano-γ-Fe2O3 films were printed on Al2O3 substrates by screen printing-injecting hybrid technology. X-ray diffraction and scanning electron microscopy techniques were used to characterize the phase structures and morphologies of the films, respectively. The sensitivity of the films to 100 ppm formaldehyde in air was investigated. The surface adsorption and reaction process between Pd-doped nano-γ-Fe2O3 films and formaldehyde was studied by in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) at different temperatures. Dioxymethylene, formate ions, polyoxymethylene, and adsorbed formaldehyde were detected when the Pd-doped nano-γ-Fe2O3 films were exposed to 100 ppm formaldehyde at different temperatures. A possible mechanism of the reaction process is discussed.

14.
Nanoscale Res Lett ; 5(9): 1437-1441, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20730129

RESUMO

In this work, porous TiO(2) hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH(4)HCO(3) as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m(2)/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200 degrees C due to its high surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...