Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 847: 157488, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870595

RESUMO

Cadmium (Cd) pollution in farmland soil increases the probability of wastage of land resources and compromised food safety. Grafting can change the absorption rates of elements in crops; however, there are few studies on grafting in bulk grain and cash crops. In this study, Glycine max was used as a scion and Luffa aegyptiaca as a rootstock for grafting experiments. The changes in total sulfur and Cd content in the leaves and grains of grafted species were determined for three consecutive generations, and the gene expression and DNA methylation status of the leaves were analyzed. The results show that grafting significantly reduced the total sulfur and Cd content in soybean leaves and grains; the Cd content in soybean leaves and grains decreased by >50 %. The plant's primary sulfur metabolism pathway was not significantly affected. Glucosinolates and DNA methylation may play important roles in reducing total sulfur and Cd accumulation. Notably, low sulfur and low Cd traits can be maintained over two generations. Our study establishes that grafting can reduce the total sulfur and Cd content in soybean, and these traits can be inherited. In summary, grafting technology can be used to prevent soybean from accumulating Cd in farmland soil. This provides a theoretical basis for grafting to cultivate crops with low Cd accumulation.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Produtos Agrícolas/metabolismo , Metilação de DNA , Glucosinolatos/metabolismo , Oryza/metabolismo , Solo , Poluentes do Solo/análise , Glycine max/genética , Glycine max/metabolismo , Enxofre/metabolismo
3.
Front Microbiol ; 13: 812991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359725

RESUMO

Arsenate [As(V)] is a toxic metalloid and has been observed at high concentrations in groundwater globally. In this study, a bioelectrochemical system (BES) was used to efficiently remove As(V) from groundwater, and the mechanisms involved were systematically investigated. Our results showed that As(V) can be efficiently removed in the BES cathode chamber. When a constant cell current of 30 mA (I cell , volume current density = 66.7 A/m3) was applied, 90 ± 3% of total As was removed at neutral pH (7.20-7.50). However, when I cell was absent, the total As in the effluent, mainly As(V), had increased approximately 2-3 times of the As(V) in influent. In the abiotic control reactor, under the same condition, no significant total As or As(V) removal was observed. These results suggest that As(V) removal was mainly ascribed to microbial electrosorption of As(V) in sludge. Moreover, part of As(V) was bioelectrochemically reduced to As(III), and sulfate was also reduced to sulfides [S(-II)] in sludge. The XANES results revealed that the produced As(III) reacted with S(-II) to form As2S3, and the residual As(III) was microbially electroadsorbed in sludge. This BES-based technology requires no organic or chemical additive and has a high As(V) removal efficiency, making it an environment-friendly technique for the remediation of As-contaminated groundwater.

4.
J Hazard Mater ; 418: 126292, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118546

RESUMO

We investigated the performance and encapsulation mechanisms of novel biochar-supported nanoscale zero-valent iron (nZVI-BC) used for the remediation of soil co-contaminated with arsenic (As), cadmium (Cd), and lead (Pb) via incubation and column experiments. Compared with the control, 0.50% of nZVI-BC significantly decreased the leakage of As, Cd, and Pb by 97.94-98.45%, 42.86-81.12%, and 82.14-92.49%, respectively. In addition, 0.50% of nZVI-BC could transform the fraction of unstable heavy metals into a stable form, which substantially decreased the availability, leachability, and bioaccessibility of the heavy metals and hence greatly reduced the human health exposure risk. Column experiments showed that 0.50% of nZVI-BC effectively restrained the leaching of As, Cd, and Pb by 95.60-99.84%, 70.82-84.18%, and 91.68-99.81%, respectively. The predominant encapsulation mechanisms of nZVI-BC included complexation, precipitation/co-precipitation, reduction, and the formation of ternary surface complexes. Based on these insights, we can devise new strategies for the remediation of soil co-contaminated with As, Cd, and Pb.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Carvão Vegetal , Humanos , Ferro/análise , Solo , Poluentes do Solo/análise
5.
J Hazard Mater ; 408: 124913, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412441

RESUMO

Global warming severely hinders both rice (Oryza sativa L.) quality and yield by increasing arsenic (As) bioavailability in paddy soils. However, details regarding As biotransformation and migration in the rice-soil system at elevated temperatures remain unclear. This study investigated the effects of increasing temperature on As behavior and translocation in rice grown in As-contaminated paddy soil at two temperature treatments (33 °C warmer temperature and 28 °C as control). The results showed that increasing temperature from 28 °C to 33 °C significantly favored total As, arsenite (As(III)) and arsenate (As(Ⅴ)) release into the soil pore-water. This increase in As bioavailability resulted in significantly higher As(III) accumulation in the whole grains at warmer treatment relative to the control. Moreover, the results suggest that increasing temperature to 33 °C promoted As(III) migration from the roots to the whole grains. Furthermore, the As(V)-reducing Xanthomonadales order and Alcaligenaceae family, and As(V) reductase-encoding arsC gene were enriched in the rhizosphere soils incubated at 33 °C. This suggests that the increase in As bioavailability in that treatment was due to enhanced As(V) reductive dissolution into the soil pore-water. Overall, this study provides new insights on how warmer future temperatures will exacerbate As accumulation in rice grains.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Rizosfera , Solo , Poluentes do Solo/análise
6.
Environ Pollut ; 258: 113790, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918063

RESUMO

In situ immobilization of heavy metals in contaminated soils using industrial by-products is an attractive remediation technique. In this work, titanium gypsum (TG) was applied at two levels (TG-L: 0.15% and TG-H: 0.30%) to simultaneously reduce the uptake of cadmium (Cd), lead (Pb) and arsenic (As) in rice grown in heavy metal contaminated paddy soils. The results showed that the addition of TG significantly decreased the pH and dissolved organic carbon (DOC) in the bulk soil. TG addition significantly improved the rice plants growth and reduced the bioavailability of Cd, Pb and As. Particularly, bioavailable Cd, Pb and As decreased by 35.2%, 38.1% and 38.0% in TG-H treatment during the tillering stage, respectively. Moreover, TG application significantly reduced the accumulation of Cd, Pb and As in brown rice. Real-time PCR analysis demonstrated that the relative abundance of sulfate-reducing bacteria increased with the TG application, but not for the iron-reducing bacteria. In addition, 16S rRNA sequencing analysis revealed that the relative abundances of heavy metal-resistant bacteria such as Bacillus, Sulfuritalea, Clostridium, Sulfuricella, Geobacter, Nocardioides and Sulfuricurvum at the genus level significantly increased with the TG addition. In conclusion, the present study implied that TG is a potential and effective amendment to immobilize metal(loid)s in soil and thereby reduce the exposure risk of metal(loid)s associated with rice consumption.


Assuntos
Arsênio/isolamento & purificação , Cádmio/isolamento & purificação , Sulfato de Cálcio/química , Chumbo/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Titânio/química , Bactérias/classificação , Oryza , RNA Ribossômico 16S , Microbiologia do Solo
7.
Environ Sci Pollut Res Int ; 27(2): 1348-1358, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31749009

RESUMO

A combined amendment (CF) consisting of 90% calcium sulfate (CaSO4) and 10% ferric oxide (Fe2O3) was used to investigate the feasibility, active principles, and possible mechanisms of the immobilization of heavy metals in paddy soil. A soil incubation experiment, two consecutive pot trials, and a field experiment were conducted to evaluate the effectiveness and persistence of CF on metal(loid) immobilization. Soil incubation experiment results indicated that the application of CF significantly decreased the concentrations of cadmium (Cd), lead (Pb), and arsenic (As) in soil solution. CF treatments simultaneously reduced the accumulation of Cd, Pb, and As in two consecutive pot trials. The total Cd, Pb, and As concentrations in the rice grains were respectively 0.02, 2.08, and 0.62 mg kg-1 in the control treatment in the second year, which exceeded the safety limits of contaminants in food products in China. However, a high amount of CF amendment (CF-H, 0.3%) effectively decreased Cd, Pb, and As by 75.0%, 75.5%, and 46.8%, respectively. Further, with the CF amendment, the bioavailable Cd and Pb in the soil and the accumulation of Cd, Pb, and As in rice grain in the field experiment were also significantly decreased. The concentrations of Cd, Pb, and As in grains were respectively 0.02, 0.03, and 0.39 mg kg-1 in the control treatment in the field experiment, which decreased to 0.01, 0.01, and 0.22 mg kg-1 with CF addition, suggesting that grains produced in the field could pose less health risk. In conclusion, these results implied that CF was an effective and persistent combined amendment to immobilize heavy metals in soil and thereby can reduce the exposure risk of metal(loid)s associated with rice consumption.


Assuntos
Arsênio/isolamento & purificação , Cádmio/metabolismo , Sulfato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Compostos Férricos/química , Chumbo/metabolismo , Oryza/química , Poluentes do Solo/metabolismo , Solo/química , Arsênio/análise , Biodegradação Ambiental , Cádmio/análise , Sulfato de Cálcio/análise , China , Grão Comestível/química , Compostos Férricos/análise , Chumbo/análise , Oryza/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química
8.
Chemosphere ; 240: 124885, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31568939

RESUMO

Chromium (Cr)-bearing electroplating sludge is a hazardous solid waste and has a detrimental effect on human health and the environment. In this study, an alkali-activated slag binders, namely, formed by the reaction of blast furnace slag (BFS) with alkali, was applied to the stabilization/solidification (S/S) of electroplating sludge. The effects of liquid-solid ratio, water glass modulus ratio (molar ratio of SiO2 to Na2O), water glass dosage, and electroplating sludge amount on the compressive strength and Cr leachability of binders were analyzed. The related mechanism of the S/S of electroplating sludge was discussed on the basis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS). Results showed that the compressive strength of the alkali-activated slag binder first increased and then remained stable with the increase in liquid-solid ratio, water glass modulus ratio, and water glass dosage. By contrast, the leaching concentrations of Cr(VI) and total Cr decreased with the increase in liquid-solid ratio, water glass modulus ratio, water glass dosage, and curing time. In addition, XRD, FTIR, and SEM-EDS revealed that the hydration products of the binders were mainly low-crystallinity and dense calcium silicate hydrate gels, and Cr(VI) had been effectively immobilized in the structure. The reduction in Cr(VI) by the reductive components in the BFS boosted the stabilization of Cr-bearing electroplating sludge. Overall, the BFS binders containing electroplating sludge had relatively high compressive strengths and low Cr(VI) leaching concentrations. The physical encapsulation, chemical bonding, and absorption contributed the Cr immobilization during the S/S process of electroplating sludge.


Assuntos
Álcalis/química , Cromo/química , Galvanoplastia , Recuperação e Remediação Ambiental , Resíduos Perigosos/análise , Esgotos/química , Humanos
9.
Sci Total Environ ; 652: 989-995, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380503

RESUMO

Heavy metal cadmium (Cd) pollution in farmland has become a serious threat to food security globally. In this work, a grafting technique was applied to eggplant (Solanum melongena) and tomato (Solanum lycopersicum) plants using Solanum torvum as rootstock to investigate effects of grafting on Cd accumulation in shoots. The un-grafted, self-grafted, and grafted plants were grown in soils containing 2 mg kg-1 Cd. Results showed that grafting on S. torvum could efficiently reduce Cd accumulation in leaves of eggplant and tomato, and the decrease was 89% and 72%, respectively. With S. torvum as rootstock, Cd concentrations were 1.11 mg kg-1 and 6.58 mg kg-1 in leaves of grafted eggplant and tomato, which were significantly decreased as compared with un-grafted plants (10.12 mg kg-1 and 23.19 mg kg-1, respectively, p < 0.05). In addition, Cd concentrations were 12.11 mg kg-1 and 29.47 mg kg-1 in leaves of self-grafted eggplant and tomato, respectively, which was similar to those in un-grafted eggplant, but more than those in un-grafted tomato (p < 0.05). This suggests that the S. torvum rootstock, and not the grafting operation, was responsible for efficient reduction of Cd accumulation in shoots of eggplant and tomato plants. Furthermore, total sulfur and sulfate (SO42-) concentrations analysis revealed that there was a similar trend between Cd accumulation and total sulfur or SO42- concentrations in leaves of plants tested. Additionally, a strong positive correlation between Cd accumulation and total sulfur or SO42- concentrations occurred in leaves of eggplant and tomato plants. Thus, sulfur, mainly SO42-, in leaves may play an important regulatory role in Cd accumulation of eggplant and tomato plants. This study provides the theoretical and technical support for applying grafting technique for the safe practice of farming in Cd-contaminated agricultural soil.


Assuntos
Cádmio/metabolismo , Poluentes do Solo/metabolismo , Solanum lycopersicum/metabolismo , Solanum melongena/metabolismo
10.
Ecotoxicol Environ Saf ; 147: 656-663, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28934709

RESUMO

Water quality criteria (WQC) are considered to be an effective management tool for protecting aquatic environments. To derive site-specific WQC for an area, local data based on local species are essential to improve the applicability of WQC derived. Due to the paucity of local fish data available for the development of site-specific WQC for the Liao River, China, four local and widespread fishes (Pseudorasbora parva, Abbottina liaoningensis, Ctenogobius giurinus, and Misgurnus anguillicaudatus) were chosen to test their sensitivities to ammonia, cadmium and nitrobenzene. These compounds are common and regularly-measured pollutants in Chinese rivers. In addition to the published data for species resident in the Liao River, site-specific WQC for the three chemicals were derived using both a log-logistic species sensitivity distribution (SSD) and the method recommended by the USEPA, in line with current best practice, which were then compared with Chinese national WQC. It was found that A. liaoningensis was the most sensitive, followed, in order, by P. parva, C. giurinus and M. anguillicaudatus was the least sensitive, and this trend was the same to all three chemicals tested. When comparing the SSD derived solely from previously-published data with that including our data on local fish, there were significant differences identified among parameters describing the SSD curves for ammonia and nitrobenzene and significant differences were detected for site-specific WQC derived for all of the three chemicals. Based on the dataset with local fish data taxa, site-specific WQC of Liao River for ammonia, cadmium, and nitrobenzene were derived to be 20.53mg/L (at a pH of 7.0 and temperature of 20°C), 3.76µg/L (at a hardness of 100mg/L CaCO3), and 0.49mg/L, respectively. Using the same deriving method for each chemical, the national Chinese WQC were higher than site-specific WQC derived in this study for ammonia (national WQC of 25.16mg/L) and nitrobenzene (national WQC of 0.57mg/L), while the national WQC for cadmium was lower (national WQC of 1.81µg/L). These results indicated that published data can be helpful for use when deriving site-specific WQC but that there were differences between site-specific and national WQC which may lead to either over- or under-protection depending on the pollutant if national WQC were used as the basis for the water management of specific river systems, like the Liao River.


Assuntos
Amônia/toxicidade , Cádmio/toxicidade , Peixes/crescimento & desenvolvimento , Nitrobenzenos/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Amônia/análise , Animais , Cádmio/análise , China , Dose Letal Mediana , Nitrobenzenos/análise , Especificidade da Espécie , Testes de Toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...