Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12119, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802644

RESUMO

Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.


Assuntos
Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Modelos Animais de Doenças , Espectrometria de Massas/métodos , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico
2.
Int J Gen Med ; 17: 1533-1543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680194

RESUMO

Purpose: The association between serum uric acid (SUA) and atrial fibrillation (AF) has been widely focused on and studied in recent years. However, the exact association between SUA and AF is unclear, and the effect of gender on the association between SUA levels and AF has been controversial. This study aimed to investigate the association between SUA levels and non-valvular AF (NVAF) and the potential effect of gender on it. Patients and Methods: A total of 866 NVAF patients (463 males, age 69.44 ± 8.07 years) and 646 sex-matched control patients in sinus rhythm, with no history of arrhythmia were included in this study. t-test, ANOVA, and chi-square test were used for baseline data analysis. The receiver operating characteristic curve, logistic regression and Pearson correlation analysis were used for correlation analysis. Results: Compared to controls, NVAF patients exhibited higher SUA (P<0.001). After adjusting for confounders of NVAF, SUA remained significantly associated with NVAF, regardless of gender (OR= 1.31, 95% CI 1.18-1.43, P<0.001). SUA demonstrated higher predictability and sensitivity in predicting the occurrence of female NVAF compared to male (area under the curve was 0.68 (95% CI 0.64-0.72, P<0.001), sensitivity 87.3%), with the optimal cut-off point identified as 5.72 mg/dL. Furthermore, SUA levels correlated with APOA1, Scr and NT-proBNP in NVAF patients. SUA levels varied significantly among NVAF subtypes. Conclusion: High SUA levels were independently associated with NVAF, regardless of gender. SUA exhibited higher predictability and sensitivity in predicting the occurrence of NVAF in females compared to males. High SUA levels may affect other NVAF-related factors and participate in the pathophysiological process of NVAF.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36467554

RESUMO

Objective: Coronary heart disease (CHD) is the leading cause of death from cardiovascular disease and has become an important public health problem worldwide. Guizhi Gancao Decoction (GGD) has been shown to be used in the treatment of CHD with good efficacy, but its specific therapeutic mechanism and active ingredients have not been fully clarified. This study aims to identify the active compounds and key targets of GGD in the treatment of CHD, explore the therapeutic mechanism of GGD, and provide candidate compounds for anti-CHD drug development. Methods: The main compounds of GGD were determined by UPLC-MS/MS analysis and screened by SwissADME. The corresponding targets of GGD compounds were obtained from SwissTargetPrediction, and the targets of CHD were obtained from the HERB and GeneCards databases. The STRING 11.5 database was used to analyze the PPI (Protein-Protein Interactions) network of potential therapeutic targets of GGD compounds. Cytoscape 3.7.2 was used to construct target-related networks and find core targets. The GEO database was used to validate the differential expression of core targets. The PANTHER Classification System was used to functionally classify potential therapeutic targets for GGD. The GO biological process analysis and KEGG pathway analysis of targets were completed by DAVID 6.8 database. AutoDockTools 1.5.6 and PyMol 2.5.2 were used to perform molecular docking of core targets with the active GGD compounds. Results: 7 active GGD compounds were obtained based on UPLC-MS/MS and pharmacological parameter evaluation, which corresponded to 131 CHD-related targets. Among them, EGFR, MAPK3, RELA, CCND1, ESR1, PTGS2, NR3C1, CYP3A4, MMP9, and PTPN11 were considered core targets. According to the targets related to CHD, glycyrrhetinic acid, liquiritigenin, and schisandrin are considered key active ingredients. GO biological process and KEGG analysis indicated that the potential targets of GGD in the treatment of CHD involve a variety of biological processes and therapeutic mechanisms. Molecular docking results showed that both the core targets and the corresponding compounds had the good binding ability. Conclusions: This study contributes to a more comprehensive understanding of the therapeutic mechanism and active ingredients of GGD for CHD and provides candidate compounds for drug development of CHD.

4.
Cardiovasc Diagn Ther ; 12(5): 681-692, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36329965

RESUMO

Background and Objective: Heart failure (HF) is a global public health problem with high morbidity, readmission, and mortality rates. The central mediators of cardiomyocyte survival and death are mitochondria. Mitochondria are a key therapeutic target for HF and are closely involved in the pathophysiological process of HF. A recent study proposes that cuproptosis, a novel cell death mechanism, is closely related to mitochondrial respiration. Therefore, this study aims to explore the link between cuproptosis and HF, and to find novel therapeutic targets and treatments for HF. Methods: A literature search (up to April 2022) was conducted through PubMed database, and the search range was limited to publications in English. After further literature search and screening, we found that we are currently the first study to explore the association between HF and cuproptosis. Key Content and Findings: Research has found that mitochondria are a key therapeutic target in HF and are involved in the pathophysiological processes of energy metabolism, oxidative stress, calcium regulation, and cell death in HF. The micronutrient copper is involved in regulating mitochondrial biological processes, and high serum copper levels are significantly associated with HF. Copper overload affects mitochondrial function and exacerbates the development of HF. And cuproptosis induced by copper overload targeting lipoylated tricarboxylic acid cycle proteins, is closely related to mitochondrial respiration. Copper chelators not only treat HF but also partially rescue copper-mediated cell death. Copper binding to lipoylated components may be the reason for the hyperacetylation of mitochondrial proteins in HF. Ferredoxin 1 (FDX1) may be an upstream regulator of protein lipoylation and is closely related to cuproptosis. Conclusions: This study demonstrates the important roles of mitochondria and micronutrient copper in HF. Cuproptosis may be involved in the pathophysiological process of HF and is responsible for the hyperacetylation of mitochondrial proteins in HF. Cuproptosis has the potential to be a novel therapeutic mechanism for HF, and FDX1 may be a key target for cuproptosis-based treatment of HF. This study provides a new research direction for the treatment of HF and new ideas for the development of new drugs.

5.
Med Sci Monit ; 28: e938511, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36424830

RESUMO

BACKGROUND D-dimer level can reflect the hypercoagulable state of atrial fibrillation (AF) and predict thromboembolic events. However, no effective indicator associated with D-dimer of AF patients has been found to prevent thromboembolic events in AF. This retrospective study from a single center aimed to investigate the correlation between serum albumin and D-dimer levels in 909 patients with non-valvular AF (NVAF) and 653 subjects in sinus rhythm. MATERIAL AND METHODS A total of 909 NVAF patients and 653 sex- and age-matched sinus rhythm participants were used to compare serum albumin and D-dimer levels. Serum albumin was determined by colorimetry, and D-dimer level was determined by latex-enhanced photoimmunoassay. We analyzed the correlation of serum albumin and D-dimer with NVAF by correlation analysis, logistic regression analysis, and receiver operating characteristic (ROC) curve. RESULTS Albumin (P<0.001) and D-dimer (P<0.001) were significantly associated with NVAF. Among NVAF patients, D-dimer level was negatively correlated with albumin levels (P<0.001), and albumin level was an independent risk factor of abnormal D-dimer level (>0.5 ug/mL), which was also an effective predictor of abnormal D-dimer level (the area under the ROC curve was 0.77, P<0.001), and the optimal cutoff value was 36.95 g/L. CONCLUSIONS Serum albumin and D-dimer levels were significantly associated with NVAF. In NVAF patients, D-dimer level was inversely correlated with albumin levels, and albumin level was an independent risk factor and effective predictor of abnormal D-dimer level. Close examination and supplementation of serum albumin can prevent thromboembolic events, but further clinical research and confirmation are needed.


Assuntos
Fibrilação Atrial , Tromboembolia , Humanos , Fibrilação Atrial/complicações , Estudos Retrospectivos , Albumina Sérica , Biomarcadores , Tromboembolia/etiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36062176

RESUMO

At present, although the early treatment of sepsis is advocated, the treatment effect of sepsis is unsatisfactory, and the mortality rate remains high. Shenfu injection (SFI) has been used to treat sepsis with good clinical efficacy. Based on network pharmacology, this study adopted a new research strategy to identify the potential therapeutic targets and key active ingredients of SFI for sepsis from the perspective of the pathophysiology of sepsis. This analysis identified 28 active ingredients of SFI based on UHPLC-QQQ MS, including 18 ginsenosides and 10 aconite alkaloids. 59 targets were associated with the glycocalyx and sepsis pathways. Based on the number of targets related to the pathophysiological process of sepsis, we identified songorine, ginsenoside Rf, ginsenoside Re, and karacoline as the key active ingredients of SFI for the treatment of sepsis. According to the cluster analysis of MCODE and the validation on the GEO dataset, LGALS3, BCHE, AKT1, and IL2 were identified as the core targets. This study further explored the therapeutic mechanism and the key active ingredients of SFI in sepsis and provided candidate compounds for drug development.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35845584

RESUMO

Shixiao powder comes from the Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and consists of two herbs, Puhuang (PH) and Wulingzhi (WLZ). PH-WLZ is a commonly used drug pair for the treatment of coronary heart disease (CHD), and its clinical effect is remarkable. However, our understanding of the mechanism of treatment of CHD is still unclear. In this study, the method of network pharmacology was used to explore the mechanism of PH-WLZ in the treatment of CHD. A total of 56 active ingredients were identified from PH-WLZ, of which 93 targets of 41 active ingredients overlapped with those of CHD. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with CHD and those associated with the mechanism of PH-WLZ in the treatment of CHD. By constructing the protein-protein interaction (PPI) network of common targets, 10 hub genes were identified. Based on the number of hub genes contained in the enrichment analysis, we obtained the key pathways of PH-WLZ in the treatment of CHD. The key KEGG pathway in the treatment of CHD by PH-WLZ is mainly enriched in atherosclerosis, inflammation, immunity, oxidative stress, and infection-related pathways. Moreover, the results of molecular docking showed that the active ingredients of PH-WLZ had a good affinity with the hub genes. The results indicate that the mechanism of PH-WLZ in the treatment of CHD may be related to regulation of lipid metabolism, regulation of immune and inflammatory responses, regulation of downstream genes of fluid shear stress, antiaging and oxidative stress, and virus inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...