Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Anim Resour ; 42(4): 580-592, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855275

RESUMO

The aim of the present study was to evaluate the effectiveness of Lycium barbarum polysaccharide (LBP) on lipid oxidation and protein degradation in Tan sheep meatballs during the frozen period. The meatballs were treated with LBP at 0.01%, 0.02%, and 0.03% and stored at -18±1°C for 0, 3, 6, 9, and 12 weeks. The effects of LBP treatment were investigated using the contents of total volatile basic nitrogen (TVB-N), texture profile (TP), thiobarbituric acid reactive substances (TBARS), colour, and pH values, compared with 0.02% butylated hydroxytoluene treatment and the blank control. The results showed that LBP treatment significantly decreased TBARS content compared with the control, which confirmed LBP to be a highly effective component in preventing lipid oxidation of Tan sheep meatballs during frozen storage, and protein degradation in Tan sheep meatballs had a significant inhibition effect because of TVB-N value reduction. In addition, the colour, TP and pH values of meatballs treated with LBP were improved dramatically. To further determine the quality changes of the blank control and all treated groups during storage, the comprehensive score evaluation equation based on principal component analysis was obtained: Y=0.51632Y1+0.29589Y2 (cumulative contribution rate=81.221%), and the 0.02% LBP-treated group had a higher comprehensive score than the other groups, and the quality of LBP-treated meatballs was better as well. In summary, LBP may reduce or inhibit lipid oxidation and protein degradation, and enhance overall quality and shelf-life in prepared meat products.

2.
Oncol Lett ; 5(6): 1958-1964, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23833675

RESUMO

Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 µM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...