Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33907-33916, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889049

RESUMO

Nociceptor is an important receptor in the organism's sensory system; it can perceive harmful stimuli and send signals to the brain in order to protect the body in time. The injury degree of nociceptor can be divided into three stages: self-healing injury, treatable injury, and permanent injury. However, the current studies on nociceptor simulation are limited to the self-healing stage due to the limitation of the untunable resistance switching behavior of memristors. In this study, we constructed Al/2DPTPAK+TAPB/Ag memristor arrays with adjustable memory behaviors to emulate the nociceptor of biological neural network of all three stages. For this purpose, a PDMS/AgNWs/ITO/PET pressure sensor was assembled to mimic the tactile perception of the skin. The memristor arrays can not only simulate all the response of nociceptor, i.e., the threshold, relaxation, no adaptation, and sensitization with the self-healing injury, but can also simulate the treatable injury and the permanent injury. These behaviors are both demonstrated with a single memristor and in the form of pattern mapping of the memristor array.


Assuntos
Tato , Tato/fisiologia , Polímeros/química , Humanos , Dimetilpolisiloxanos/química
2.
Adv Mater ; 36(23): e2309337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416878

RESUMO

Organic phototransistors (OPTs), as photosensitive organic field-effect transistors (OFETs), have gained significant attention due to their pivotal roles in imaging, optical communication, and night vision. However, their performance is fundamentally limited by the Boltzmann distribution of charge carriers, which constrains the average subthreshold swing (SSave) to a minimum of 60 mV/decade at room temperature. In this study, an innovative one-transistor-one-memristor (1T1R) architecture is proposed to overcome the Boltzmann limit in conventional OFETs. By replacing the source electrode in an OFET with a memristor, the 1T1R device exploits the memristor's sharp resistance state transitions to achieve an ultra-low SSave of 18 mV/decade. Consequently, the 1T1R devices demonstrate remarkable sensitivity to photo illumination, with a high specific detectivity of 3.9 × 109 cm W-1Hz1/2, outperforming conventional OPTs (4.9 × 104 cm W-1Hz1/2) by more than four orders of magnitude. The 1T1R architecture presents a potentially universal solution for overcoming the detrimental effects of "Boltzmann tyranny," setting the stage for the development of ultra-low SSave devices in various optoelectronic applications.

3.
Biosensors (Basel) ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37185501

RESUMO

In comparison with traditional clinical diagnosis methods, field-effect transistor (FET)-based biosensors have the advantages of fast response, easy miniaturization and integration for high-throughput screening, which demonstrates their great technical potential in the biomarker detection platform. This mini review mainly summarizes recent advances in FET biosensors. Firstly, the review gives an overview of the design strategies of biosensors for sensitive assay, including the structures of devices, functionalization methods and semiconductor materials used. Having established this background, the review then focuses on the following aspects: immunoassay based on a single biosensor for disease diagnosis; the efficient integration of FET biosensors into a large-area array, where multiplexing provides valuable insights for high-throughput testing options; and the integration of FET biosensors into microfluidics, which contributes to the rapid development of lab-on-chip (LOC) sensing platforms and the integration of biosensors with other types of sensors for multifunctional applications. Finally, we summarize the long-term prospects for the commercialization of FET sensing systems.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Microfluídica , Análise de Sequência com Séries de Oligonucleotídeos
4.
Angew Chem Int Ed Engl ; 62(18): e202300532, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36737406

RESUMO

Bimetallic electrocatalysts with its superior performance has a broad application prospect in oxygen evolution reaction (OER), but the fundamental understanding of the mechanism of synergistic effect is still limited since there lacks a practical way to decouple the influence factors on the intrinsic activity of active sites from others. Herein, a series of bimetallic Co-Ni two-dimensional polymer (2DP) model OER catalysts with well-defined architecture, monolayer characteristic, were designed and synthesized to explore the influence of the coupling strength between metal centers on OER performance. The coupling strength was regulated by adjusting the spacing between metal centers or the conjugation degree of bridge skeleton. Among the examined 2DPs, CoTAPP-Ni-MF-2DP, which has the strongest coupling strength between metal centers exhibited the best OER performance. These model systems can help to explore the precise structure-performance relationships, which is important for the rational catalyst design at the atomic/molecular levels.

5.
Sci Adv ; 8(42): eabn2103, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269823

RESUMO

The Chang'E-5 (CE5) mission has demonstrated that lunar volcanism was still active until two billion years ago, much younger than the previous isotopically dated lunar basalts. How the small Moon retained enough heat to drive such late volcanism is unknown, particularly as the CE5 mantle source was anhydrous and depleted in heat-producing elements. We conduct fractional crystallization and mantle melting simulations that show that mantle melting point depression by the presence of fusible, easily melted components could trigger young volcanism. Enriched in calcium oxide and titanium dioxide compared to older Apollo magmas, the young CE5 magma was, thus, sourced from the overturn of the late-stage fusible cumulates of the lunar magma ocean. Mantle melting point depression is the first mechanism to account for young volcanism on the Moon that is consistent with the newly returned CE5 basalts.

6.
Angew Chem Int Ed Engl ; 61(46): e202207845, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36106432

RESUMO

Innovative bimetallic materials provide more possibilities for further improving the performance of oxygen evolution reaction (OER) electrocatalysts. However, it is still a great challenge to rationally design bimetallic catalysts because there is not a practical way to decouple the factors influencing the intrinsic activity of active sites from others, thus hindering in-depth understanding of the mechanism. Herein, we provide a rational design of bimetallic Ni, Co two-dimensional polymer model OER catalyst. The well-defined architecture, identical density of active sites and monolayer characteristic allow us to decouple the intrinsic activity of active sites from other factors. The results confirmed that the relative position and local coordination environment has significant effect on the synergistic effect of the bimetallic centres. The highest electrocatalytic activity with the turnover frequency value up to 26.19 s-1 was achieved at the overpotential of 500 mV.

7.
Microsc Res Tech ; 85(7): 2729-2739, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35238423

RESUMO

Raman is an important tool for diagnosing minerals in geoscience. However, smaller magnification of optical microscope assembled in conventional Raman spectroscopy limits the application of Raman in sub-micro and nano scale. Raman imaging and scanning electron microscopy (RISE) combine the advantage of scanning electron microscope and Raman spectroscopy, which can collect the morphology, composition, and structure information in the same micro region of the geological sample in situ. In this paper, we introduce the development and working mechanism of RISE, and carried out some typical applications in different research of geoscience. The purpose of this review is to allow readers to understand the basic principles and application potential of RISE in geoscience. Finally, we briefly point out current challenges faced by this technology and some research directions in the future. HIGHLIGHTS: Raman imaging and scanning electron microscopy as potential method was proposed for the research on geosciences. Common polymorphism and isomorphism were distinguished clearly in situ. A new research route for tiny inclusion and organic matter in situ was developed.

8.
Nature ; 600(7887): 54-58, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666338

RESUMO

The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9-2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead-lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang'e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800-900 million years. The µ value of the Chang'e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300-1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600-3,700), indicating that the Chang'e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.

9.
Nanoscale ; 13(29): 12466-12474, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477611

RESUMO

The development of optical materials with room temperature phosphorescence (RTP) and white light emission (WLEDs) is highly desirable and remains a challenging task. Herein, a porous metal-organic framework PCN-921 with a high quantum yield (ΦF = 93.6%) was achieved. To make full use of the advantages of the high porosity of PCN-921, we hierarchically encapsulated different guest molecules coronene and rhodamine B (RhB) into the framework. Unsurprisingly, the hybrid material coronene@PCN-921 was obtained after in situ encapsulation of the guest coronene into the framework, and it exhibits obvious RTP behavior with a long phosphorescence lifetime of 62.5 ns. Subsequently, second guest RhB molecules were introduced after soaking in RhB solution and the material RhB@coronene@PCN-921 was achieved. Interestingly, it exhibits white light emission with the CIE coordinates of (0.29, 0.34), and can be used as a high performance WLED lamp. This is the first work on dual-functional hybrid dyes@MOFs with hierarchical guest encapsulation for RTP and white light emission, which suggests the potential applications of MOFs in multifunctional optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...